FINAL

<APPLICATION NAME>

NH Department of XXXXXX

Test Plan Document

[image: image1.jpg]DEPARTMENT OF

INFORMATION TECHNOL@ Y

<Application Name>

TEST PLAN

[image: image2.png]

02.18.2005
Version 1.0

TABLE OF CONTENTS

41.
INTRODUCTION

41.1
Using this Document

41.2
Purpose

41.3
Owners and Contacts

41.4
Deliverables

51.5
Signoffs

51.6
Revision History

51.7
Referenced Documents

61.8
Definitions, Acronyms and Abbreviations

62.
TEST PLAN OVERVIEW

63.
ASSUMPTIONS AND CONSTRAINTS

73.1
Change Requests

73.2
Personnel Dependencies

73.3
Software Dependencies

73.4
Hardware Dependencies

73.5
Test Data & Database

74.
RISKS

74.1
Standard Risks

84.2
Customized Project Risks

85.
CONTROL PROCEDURES

85.1
Environment Requirements

85.2
Testing Criteria

85.2.1
Suspension / Exit Criteria

85.2.2
Resumption Criteria

85.3
Defect/Problem Tracking

85.3.1
Defect/Problem Reporting

95.3.2
Problem Tracking Tool

96.
SCOPE

106.1
Data Capture/Front End Application

106.2
Data Storage, Conversion, and Exchange

106.3
Functionality/Processes

106.4
Outputs/Reports

106.5
Security

106.6
Acceptance Criteria

106.7
Features not to be tested

127.
TEST STRATEGY

13APPENDIX A

13A.1
Resources and Responsibilities

14APPENDIX B

14B.1
 Unit Testing

14B.2
 Integration Testing

14B.3
 System Testing

14B.3.1
Performance Test

14B.3.2
 Security Test

14B.3.3
 Stress and Volume Test

15B.3.4
 Backup and Recovery Test

15B.3.5
 Regression Test

15B.3.6
 Documentation Test

15B.4
User Acceptance Test

1. INTRODUCTION
1.1 Using this Document
<The text enclosed in the less-than/greater-than symbols is included for the benefit of the person writing the document and should be removed before the document is finalized.>

The Test Plan for software systems should be customized to the needs of the project building and implementing the system. This template is one of many documents related to this software development project. Thus although it is organized such that it can be a single stand-alone document, the material in this template is intended to be repackaged into multiple documents, reorganized and augmented for the needs of the project. Please refer to Section 1.6 Referenced Documents for a listing of additional project-specific documentation.

1.2 Purpose

The purpose of this document is to serve as a basis for describing the overall approach to testing <<Project/Application Name>>. Testing of <<Project/Application Name>> is a critical step to the success of the application which includes Unit, Integration, System and User Acceptance Testing (UAT). Upon successful completion of testing, the << Project/Application Name>> will be ready for implementation. This document will be composed by the DOIT Technical Team with validation from Customer/User as needed.
1.3 Owners and Contacts

Refer to Appendix A for definitions of roles.

	Name
	Email
	Phone
	Role

	John Doe
	Jdoe@Me.com
	303-471-8344
	Project Manager

	Joe Tester
	
	
	System Test Lead

	Jane ProdSupport
	
	
	Production Support Mgr

	Joe UserMgr
	
	
	User Test Lead

	Joe Developer
	
	
	Developer – Presentation Tier

	Jane Developer
	
	
	Developer – Business Tier

	Joe DBA
	
	
	Data Base Administrator

	Joe Tester
	
	
	Tester

	Jane Tester
	
	
	Tester

	Joe Customer
	
	
	Department VP

	Jane Customer
	
	
	Department Mgr

	Josey Customer
	
	
	Product Support

1.4 Deliverables

	Deliverable
	Responsibility
	Duration in Days

	
	
	

	Develop Test cases
	Testers
	

	
	
	

	Test Case Review
	Test Lead, Project Manager, Testers
	

	
	
	

	Develop Automated tests
	Testers
	

	
	
	

	Execute manual and automated tests
	Testers & Test Lead
	

	
	
	

	Complete Defect Reports
	System and User Acceptance Testers
	On-going

	
	
	

	Document and communicate test status/coverage
	Test Lead
	Weekly

	
	
	

	Execute User Acceptance tests
	User Acceptance Testers
	

	
	
	

	Document and communicate Acceptance test status/coverage
	Test Lead, Project Manager
	

	
	
	

	Final Test Summary Report
	Test Lead
	

1.5 Signoffs
	Name
	Date
	Signature

	John Doe, PM/DM

	xx/xx/xx
	

	Joe Tester, System Test Lead

	
	

	Jane ProdSupport, Production Support Mgr

	
	

	Joe User Mgr, UM

	
	

	Joe Customer, Customer

	
	

1.6 Revision History
	Date
	Reason for change(s)
	Author(s)

	06/24/2004
	First Draft
	Jane Tester

	07/15/2004
	Revision based on completion of Technical Design
	John Smith

	
	
	

	
	
	

1.7 Referenced Documents
	Document
	Version/Date
	Author(s)

	Project Concept Document
	1/7/2004
	John User

	Functional Design Phase Business Requirements
	7/12/2004
	Jane Function

	Functional Design Phase Functional Design
	9/20/2004
	Sam Retired

	Functional Design Phase Solution Alternatives
	11/1/2004
	Joe Technical

	System Design Phase Technical Design
	12/3/2004
	Sarah Code

1.8 Definitions, Acronyms and Abbreviations
<This section contains definitions, acronyms and abbreviations referred to within this document that may need to be clarified to assist the reader in understanding the meaning and or intent of the information contained within this document. Some examples are shown below. Please populate this section based on the specific content you provide for the Business Requirements for your project. Please see Appendix B for descriptions of different types of testing.>

<ASP
Application Service Provider>

<Back-end
That portion of an application that the users do not interact with directly, relative to the client/server computing model, a front-end is likely to be a client and a back-end to be a server.>

<Back-office
The internal business functions of a company such as finance, accounting, legal, human resources and operations.>

<COTS
Commercial off-the-shelf. Describes ready-made products that can easily be obtained. The term is sometimes used in military procurement specifications.>

2. TEST PLAN OVERVIEW

<Please note that this test plan template contains a comprehensive list of tests that could be performed. Not all types may be necessary for every project. Use the parts/types that make sense for the size/complexity of your project.>

< Enter an explanation of the project, its purpose, and objectives that will give some background as to why certain testing will be performed and outcomes that are expected. >

This Test Plan for <Application Name> supports the following high-level objectives:

1. <Test incoming feed of data and convert to proper format for this application.>

2. <Test that the system will process employee payroll biweekly.>

3. <Test that output files are acceptable by XYZ State system.>

3.
ASSUMPTIONS AND CONSTRAINTS

<The text included in this section are examples of ‘Best Practice’ and may require modification to better meet the testing needs for your specific project. >

3.1 Change Requests

Once testing begins, changes to the application and/or overall system are discouraged. If functional changes are required, the proposed changes will be discussed with the Project Manager, Project Team, and be escalated as necessary to appropriate management levels to assess the impact of the change and if/when it should be implemented.

3.2 Personnel Dependencies

· The system test team requires experienced testers to develop, perform and validate tests.

· The user acceptance team requires users who will be interacting with the system and management level staff with approval authority to sign off on the entire testing effort.

· All test teams will also need system developers and subject matter experts.

3.3 Software Dependencies

The source code must be unit tested and provided within the scheduled time outlined in the Project Schedule.

3.4 Hardware Dependencies

Appropriate PCs (with specified hardware/software) as well as the connectivity to appropriate servers need to be available during normal working hours. Any downtime will affect the test schedule.

3.5 Test Data & Database

Test data & database should also be made available to the testers for use during testing.

4. RISKS

 <The Standard Risks text included in this section are examples of ‘Best Practice’ and may require modification to better meet the testing needs for your specific project.. Please add unique Risks specific to your project in section 4.2 Customized Project Risks. >

4.1 Standard Risks

Schedule: The schedule for each project phase could affect testing. A slip in the schedule in one of the other phases could result in a subsequent slip in the test phase. Close project management is crucial to meeting the forecasted completion date. Have prewritten test cases that cover all scenarios. Therefore, sufficient time must be allocated to write and execute these test cases thoroughly.

Technical: Network connectivity, backups, and ability to recover data will be crucial for the test environment. In addition, if parallel testing is conducted, the legacy system must be operational and available.

Management: Management support is required so when the project falls behind, the test schedule does not get squeezed to make up for the delay. Management can reduce the risk of delays by supporting the test team throughout the testing phase and assigning people to this project with the required time set aside as well as the appropriate skill sets to run the tests and check results.

Personnel: It is very important to have subject matter experts involved in testing. The test cases should be reviewed with these knowledgeable individuals prior to starting testing. It is also advisable when performing data entry tests, that users who are somewhat familiar, but not overly familiar with the software be used.

Requirements: The test plan and test schedule are based on the currently known requirements outlined in the User Requirements documentation. If the documentation of requirements is not complete, we run the risk of not testing all requirements.

4.2 Customized Project Risks

Risks specific to this project are listed below:

· <Example: Planned interface to IFS will soon be replaced by ERP. Unknown format for ERP at this time.>

5. CONTROL PROCEDURES

5.1 Environment Requirements

<The questions shown below are examples of Environment Requirements for your testing effort. We suggest that you consider and include information pertaining to these areas of the testing environment in your test plan. You may want to add additional test environment details specific to your project.>

· Where will test results will be stored – system, user acceptance?

· How will legacy data for parallel tests be produced? Where will results be stored? Create a process for comparing data automatically.

· What software requirements are there for testing? Server, end user, etc

· Systems we are interfacing with should be prepared to receive test data produced from our test outputs.

5.2 Testing Criteria

5.2.1 Suspension / Exit Criteria

<Add/Modify criteria that will justify test suspension.>

If any defects are found which seriously impact the test progress, the project manager may choose to

Suspend testing. Criteria that will justify test suspension are:

· Hardware/software is not available at the times indicated in the project schedule.

· Source code contains one or more critical defects, which seriously prevents or limits testing progress.

· Assigned test resources are not available when needed by the test team.

5.2.2 Resumption Criteria

<Add/Modify Resumption Criteria to reflect the process your project team has agreed to.>

If testing is suspended, resumption will only occur when the problem(s) that caused the suspension has been resolved. When a critical defect is the cause of the suspension, the “FIX” must be verified by the project manager before testing is resumed.
5.3 Defect/Problem Tracking

5.3.1 Defect/Problem Reporting

<The text included in this section are examples of ‘Best Practice’ and may require modification to better meet the testing needs for your specific project >

<Example: When defects/problems are found, the testers will complete a defect/problem report. The project manager and/or test lead will dispatch defects/problems to the appropriate developers for resolution. >

< Specify the automated defect/problem tracking system to be used, if one exists. Training in the use of the testing tool will be provided for all testers before their phase of testing begins. The defect/problem tracking system will be accessible by testers, developers & all members of the project team. When a defect/problem has been fixed or more information is needed, the developer will change the status of the defect/problem to indicate the current state. Once a defect/problem is verified as FIXED by the testers, the testers will close the defect/problem report.>

Defect/Problem classifications will be:

Class A – high priority. Critical defect. Serious defect that makes the system inoperable or business cannot continue to be conducted because of the error. These errors must be fixed before any class B or C errors.

Class B – medium priority. Affects one aspect of the business, but other aspects can continue without it. Business rules not being enforced, misleading or incorrect results, or errors with major workarounds are also considered class B. These errors should be fixed after any Class A errors, but before Class C.

Class C – low priority. Cosmetic problems, minor workarounds, report headers/footers, page numbering, etc. Errors that do not affect data or other results, but would be nice to have. These errors should be addressed only after all Class A and B errors are resolved.

5.3.2 Problem Tracking Tool

<The problem tracking software to be employed should be specified here, e.g. MS Access, Excel, Bugzilla, Mantis, Mercury, etc…>

<At a minimum, the following data elements should be collected regarding defects/problems:

Defect/Problem #

Tester

Date defect/problem found

Defect/Problem classification

Problem description

Associated Requirement

Assigned to

Solution

Solution date>

6. SCOPE

<We have included examples of test groups/categories, i.e. Data Capture/Front End Application, Data Storage, Conversion, and Exchange, Functionality/Processes, Outputs/Reports, Security, Acceptance Criteria, Features not to be Tested. Test scope should closely correspond with the categorization within the Business Requirements, Functional Design, and Technical Design for traceability.>

A Test Script template will be used to document the actual Test Scripts/Cases, please refer to Appendix C. Definitions of the standard information captured within the Test Script include the following:

Test Roles
-
User role as specified in the business requirements.

Test Objective-
A brief statement on what the test is intended to validate.

Item Number-
The number of each scenario included in this test. Note: Item # coincides with Use Case # as defined in the Business Requirements document.

Test Condition-
List each of the possible scenarios for the action being tested. Include all scenarios in a single script.

Operator Action-
Numerically list all the steps to be performed for this test condition.

Input Requirements-
List input criteria required for the operation action. Examples include: User Id = casetech; “Client must be in an open removal.”

Expected Results-
Describe how the system should respond.

Actual Results-
Describe how the system actually responds, if differently than expected.

Pass/Fail-
Determine if the actual results variation warrants a test failure. Type P or F

 Areas of the application to be tested include the following:

6.1 Data Capture/Front End Application

· User interface testing

· Screens

· Data entry and retrieval

· Menu/mouse functionality

6.2 Data Storage, Conversion, and Exchange

· Database: relationships, data structures, elements, indexes, etc

· Data integrity: referential integrity, foreign keys

· Cascading updates/deletes

· File transfers

· Data loads: converting data from/to other systems, correct formats, etc

6.3 Functionality/Processes

· Functions

· Batch/Scheduled jobs

· Modules

· etc.

6.4 Outputs/Reports

The following reports should be produced and contain the correct information on a <insert timeframe: daily, weekly, bi-weekly, etc> basis:

· Report 1

· Report 2

· System Interface 1

6.5 Security

Appropriate users have access to the appropriate

· Functions

· Data

· Menus
6.6 Acceptance Criteria

Describe the criteria for acceptance of the completion of the test results (should be tied to business requirements.) When is the testing complete?

6.7 Features not to be tested

Specify areas that

· Are out of scope of the project

· Will be tested by outside groups

· Will not be tested for various other reasons. Include why the features will not be tested.

7. TEST STRATEGY

The test strategy consists of a series of different tests that will fully exercise the application. Please specify which types of reviews and testing will be performed for this project. Please refer to Appendix B for definitions of the types of testing.

	
	Yes
	No
	If no, Why

	Document Reviews
	
	
	

	Bug Review Meetings
	
	
	

	Unit Testing
	
	
	

	Integration Testing
	
	
	

	System Testing
	
	
	

	Performance Test
	
	
	

	Security Test
	
	
	

	Stress/Volume Test
	
	
	

	Backup/Recovery Test
	
	
	

	Regression Test
	
	
	

	Documentation Test
	
	
	

	User Acceptance Test
	
	
	

APPENDIX A

A.1
Resources and Responsibilities

The resources involved in testing, along with contact information are listed in section 1.2 of this document. This section describes the responsibilities of each of these resources during testing.

	Role
	Responsibilities

	 Project Manager
	· Project schedules

· Overall success of the project

· With Test Lead, will determine when system test will start and end

	
	

	 Test Lead
	· Ensures the overall success of the test cycles

· Coordinates schedules, equipment, & tools for the testers

· Writes/updates the Test Plan, Weekly Test Status reports and Final Test Summary report.

· Coordinates weekly meetings

· Communicates testing status to the project team

· Dispatches defects to appropriate developers

· Assist User Acceptance Testers in the creation of test cases/scripts

	
	

	 System Testers
	· Write test cases

· Execute system tests

· Report defects to test lead and developers

	
	

	 User Acceptance Testers
	· Assist in creation of User Acceptance test cases/scripts.

· Perform User Acceptance testing

· Perform black box testing

· Record defects

· Retest

· Participate in test status meetings as necessary

	
	

	 Developers
	· Program the system

· Create unit test data

· Perform unit testing

· Fix defects found during the various types of testing

· Report status of defects

· Participate in test status meetings as necessary

APPENDIX B

B.1

Unit Testing

The developers will unit test their own sections of the application. The developers will create their own test data and test scenarios unless these things are otherwise provided for them.

B.2

Integration Testing

Ensure that parts of the application that need to communicate or have some relationship to each other work properly together. This testing will be performed as a coordinated effort among the developers or will be conducted by the testing lead. System testing should not begin until integration testing is complete. List the functions that should be integration tested below.

· Integrated function 1

· Integrated function 2

· Etc.

B.3

System Testing

The System test will focus on the behavior of the application and system as a whole. Scenarios will be executed

· Within the application

· Through file transfers

· Reports generation

· Other outputs or data checks

· To verify that the system successfully accomplishes the functions included in the scope of the project

· Test cases and scripts/scenarios should be mapped to business requirements outlined in the User Requirements document. This will ensure that all requirements have been addressed and tested.

The following subsections are also part of system testing.

B.3.1
Performance Test

Performance tests will be conducted to ensure that

· The data entry process can be completed in a timely manner for each step. The response time required should be determined with the user community.

· File transfers are occurring at the right times and are completing with little to no interruption for the user community

· Batch jobs are completing in a reasonable amount of time and fit in appropriately with other batch schedules occurring for this and other systems

· Consider testing on a server with multiple databases to see how performance will be in a production environment where several databases are on the same server.

· Test with large enough volume to simulate higher data volume to see how the database response time will be.

B.3.2

Security Test

The security testing discussed in section 3.6 will be conducted as part of system testing.

B.3.3

Stress and Volume Test

· Simulate the stress on the application and server that is expected during certain active times such as during the workday, workweek, month, etc.

· Simulate the volume of data that is expected in a production environment.

· Test scenarios for various numbers of users.

· Include test cases that cover special situations like holidays, major events, etc. that could affect the timing and/or volume of entries.

B.3.4

Backup and Recovery Test

During testing, we may encounter problems that require us to restore data in our test environment.

· Perform regular backups

· Test the recovery process to ensure that we can restore data back to specific points in time.

· This test will also be useful in ensuring that the production system can be restored to a point in time from backup when we go live. It is vitally important that all data is recovered after a system failure & no corruption of the data occurred.

B.3.5

Regression Test

Regression testing is done in order to ascertain whether fixes to defects have caused errors elsewhere in the application/process.

· If possible, create a standard set of tests that can be run in an automated way. For instance, if there is a batch job to kick off certain processing from beginning to end, this would be a good regression test after major fixes or a new release has been implemented.

B.3.6

Documentation Test

If technical and end user documentation for the system has been developed, the following are good checks for ensuring the accuracy of the documentation:

· Check the accuracy of system documentation from a technical perspective.

· If receiving code from an outside vendor or other agency, check that the documentation is adequate for new personnel to be able to understand the code’s purpose.

· Testers should be personnel who are not part of the development team so we can be sure the steps can be followed when current personnel are out for the day or are no longer employed in the same position.

· Testers should also employ the user documentation to ensure that it is clear for the users to know how they are supposed to use the system. This same testing will also be conducted again during user acceptance testing.

B.4
User Acceptance Test

After system testing is complete, user acceptance testing will be done.

Testers should:

· Be knowledgeable business users who are familiar with the scope of the project

· Create test cases to cover appropriate scenarios of system use. Oftentimes, IT resources may need to assist the user acceptance test team in how to develop the test cases.

· Confirm that the system is developed according to the specified user requirements. Test cases and scripts/scenarios should be mapped to business requirements outlined in the User Requirements document.

· Document “bugs” that are found

· Retest after bugs have been fixed

· Confirm that the system is ready for operational use.

· Black box testing should also be conducted as part of user acceptance testing. This testing by individuals who do not necessarily know the business, can ensure that the application doesn’t fail in areas that business users may not think to try.

Office of Information Technology, Agency Software Division - <Agency>

9

