
FINAL

 DoIT – 11.03.2015 - v.4

PAYMENT CARD INDUSTRY DATA SECURITY STANDARDS

APPLICATION DEVELOPMENT AND MAINTENANCE PROCEDURES

Page 1 of 5

NH Department of Information Technology - Office of the Chief Information Officer (CIO)

Effective - 1.03.2012

Purpose: The Department of Information Technology (DoIT) is committed to developing secure

applications. DoIT’s System Development Methodology (SDM) and Application

Development requirements ensure that security is paramount when developing an

application.

Additional security is mandated for applications involved in credit card processing. This is

any application included in cardholder environment that processes, stores or transmits credit

card data. All application development shall comply with Payment Card Industry Data

Security Standards (PCI DSS) Requirement 6: Development and maintain secure systems

and applications. . . .

This procedure shall be used in conjunction with, and not as a replacement to, the System

Development Methodology and the Application Development requirements.

Procedure: This document outlines all the steps and components that must be in place and validated as

correct prior to moving an application that is part of the transmission, processing or storage

of credit card transactions

The following must be in place prior to a new application being moved into production or

any signification changes to an existing application are promoted to production.

1. Develop software applications securely and in accordance with PCI DSS

Requirements relative to
a. Secure authentication and logging
b. Based on industry standards and best practices
c. Incorporating information security through the software development

lifecycle
2. Establish a separate development/test environment with appropriate segmentation

from the production environment.
3. Remove development, test and any custom application accounts, user accounts and

passwords prior to promoting the application to production for access by end users
4. Restrict test data to development/test environments and prohibit use of live

cardholder data for use in the development/test environment.
5. Review of Custom Code prior to release to production
6. Penetration Testing for any significant change, or annually, prior to release to

production
7. Follow all ICR policies and procedures relative to promoting application to

production environment which includes separation of responsibilities for activities

in development/test versus production environments.
8. Implement secure coding techniques that address items in the OWASP Top Ten as

well as any common coding vulnerability identified explicitly in PCI DSS

Requirement 6.5 et seq.

Guidance: PCI DSS requires that applications are tested specifically for the vulnerabilities listed in the

procedures. This section provides guidance on testing procedures to be followed by

developers.

FINAL

 DoIT – 11.03.2015 - v.4

PAYMENT CARD INDUSTRY DATA SECURITY STANDARDS

APPLICATION DEVELOPMENT AND MAINTENANCE PROCEDURES

Page 2 of 5

NH Department of Information Technology - Office of the Chief Information Officer (CIO)

Effective - 1.03.2012

1. Injection flaws, particularly SQL injection. Also consider OS Command Injection,

LDAP and XPath injection flaws as well as other injection flaws

Testing procedure: Validate input to verify user data cannot modify meaning of

commands and queries, utilize parameterized queries, etc.

Guidance: Validate input to verify user data cannot modify meaning of commands

and queries. Injection flaws, particularly SQL injection, are a commonly used

method for compromising applications. Injection occurs when user-supplied data is

sent to an interpreter as part of a command or query. The attacker's hostile data

tricks the interpreter into executing unintended commands or changing data, and

allows the attacker to attack components inside the network through the application,

to initiate attacks such as buffer overflows, or to reveal both confidential

information and server application functionality. This is also a popular way to

conduct fraudulent transactions on commerce-enabled web sites. Information from

requests should be validated before being sent to the application - for example, by

checking for all alpha characters, mix of alpha and numeric characters, etc.

2. Buffer Overflow

Testing procedure: Validate buffer boundaries and truncate input strings.

Guidance: Ensure that applications are not vulnerable to buffer overflow attacks.

Buffer overflows happen when an application does not have appropriate bounds

checking on its buffer space. To exploit a buffer overflow vulnerability, an attacker

would send an application a larger amount of information than one of its particular

buffers is able to handle. This can cause the information in the buffer to be pushed

out of the buffer’s memory space and into executable memory space. When this

occurs, the attacker has the ability to insert malicious code at the end of the buffer

and then push that malicious code into executable memory space by overflowing

the buffer. The malicious code is then executed and often enables the attacker

remote access to the application and/or infected system.

3. Insecure Cryptographic Storage

Testing procedure: Prevent cryptographic flaws and use strong cryptographic

algorithms and keys

Guidance: Prevent cryptographic flaws. Applications that do not utilize strong

cryptographic functions properly to store data are at increased risk of being

compromised and exposing cardholder data. If an attacker is able to exploit weak

cryptographic processes, they may be able to gain clear-text access to encrypted

data.

4. Insecure communications

Testing procedure: Verify that insecure communications are addressed by coding

techniques that properly authenticate and encrypt all sensitive communications

FINAL

 DoIT – 11.03.2015 - v.4

PAYMENT CARD INDUSTRY DATA SECURITY STANDARDS

APPLICATION DEVELOPMENT AND MAINTENANCE PROCEDURES

Page 3 of 5

NH Department of Information Technology - Office of the Chief Information Officer (CIO)

Effective - 1.03.2012

Guidance: Properly encrypt all authenticated and sensitive communications.

Applications that fail to adequately encrypt network traffic using strong

cryptography are at increased risk of being compromised and exposing cardholder

data. If an attacker is able to exploit weak cryptographic processes, they may be

able to gain control of an application or even gain clear-text access to encrypted

data.

5. Improper error handling

Testing procedure: Verify that improper error handling is addressed by coding

techniques that do not leak information via error messages

Guidance: Do not leak information via error messages or other means.

Applications can unintentionally leak information about their configuration,

internal workings, or violate privacy through a variety of application problems.

Attackers use this weakness to steal sensitive data, or conduct more serious attacks.

Also, incorrect error handling provides information that helps a malicious

individual compromise the system. If a malicious individual can create errors that

the application does not handle properly, they can gain detailed system information,

create denial-ofservice interruptions, cause security to fail, or crash the server. For

example, the message "incorrect password provided" tells them the user ID

provided was accurate and that they should focus their efforts only on the password.

Use more generic error messages, like "data could not be verified."

6. All “High” Vulnerabilities

Testing procedure: Verify that coding techniques address any “high risk”

vulnerabilities that could affect the application.

Guidance: Any high vulnerabilities noted per Requirement 6.1 that could affect

the application should be accounted for during the development phase. For

example, a vulnerability identified in a shared library or in the underlying operating

system should be evaluated and addressed prior to the application being released

to production.

7. Cross site Scripting

Testing procedure: Validate all parameters before inclusion, utilize context-

sensitive escaping, etc.

Guidance: All parameters should be validated before inclusion. XSS flaws occur

whenever an application takes user supplied data and sends it to a web browser

without first validating or encoding that content. XSS allows attackers to execute

script in the victim's browser which can hijack user sessions, deface web sites,

possibly introduce worms, etc.

8. Improper Access Control

Testing procedure: Verify that Improper Access Control, such as insecure direct

FINAL

 DoIT – 11.03.2015 - v.4

PAYMENT CARD INDUSTRY DATA SECURITY STANDARDS

APPLICATION DEVELOPMENT AND MAINTENANCE PROCEDURES

Page 4 of 5

NH Department of Information Technology - Office of the Chief Information Officer (CIO)

Effective - 1.03.2012

object references, failure to restrict URL access, and directory traversal is addressed

through secure coding. Properly authenticate users and sanitize input. Do not

expose internal object references to users.

Guidance: Do not expose internal object references to users. A direct object

reference occurs when a developer exposes a reference to an internal

implementation object, such as a file, directory, database record, or key, as a URL

or form parameter. Attackers can manipulate those references to access other

objects without authorization. Consistently enforce access control in presentation

layer and business logic for all URLs. Frequently, the only way an application

protects sensitive functionality is by preventing the display of links or URLs to

unauthorized users. Attackers can use this weakness to access and perform

unauthorized operations by accessing those URLs directly. Protect against directory

traversal. An attacker may be able to enumerate and navigate the directory structure

of a website thus gaining access to unauthorized information as well as gaining

further insight into the workings of the site for later exploitation

9. Cross-site Request Forgery

Testing procedure: Validate that the application does not rely on authorization

credentials and tokens automatically submitted by browsers.

Guidance: Do not reply on authorization credentials and tokens automatically

submitted by browsers. A CSRF attack forces a logged-on victim's browser to send

a pre authenticated request to a vulnerable web application, which then forces

the victim's browser to perform a hostile action to the benefit of the attacker. CSRF

can be as powerful as the web application that it attacks.

10. Broken Authentication and Session Management

Testing procedure: Verify that broken authentication and session management are

addressed via coding techniques that commonly include flagging session

tokens/cookies as secure, not exposing session IDs in the URL, and incorporating

appropriate time-outs and rotation of session IDs.

Guidance: Secure authentication and session management prevents unauthorized

individuals from compromising legitimate account credentials, keys, or session

tokens that would otherwise enable the intruder to assume the identity of an

authorized user.

Accountability: This procedure applies to all applications developed internally as well as bespoke or custom

software developed by a third party.

It is the responsibility of each DoIT Division Director and Bureau Chief or their designee to

enforce this policy. Employees who do not comply with this policy shall be subject to

disciplinary action as outlined in the Administrative Rules of the Division of Personnel.

 Description: This procedure provides a common approach to application security.

FINAL

 DoIT – 11.03.2015 - v.4

PAYMENT CARD INDUSTRY DATA SECURITY STANDARDS

APPLICATION DEVELOPMENT AND MAINTENANCE PROCEDURES

Page 5 of 5

NH Department of Information Technology - Office of the Chief Information Officer (CIO)

Effective - 1.03.2012

Reference: System Development Methodology (SDM)

Payment Card Industry Data Security Standards Requirements 6.x

Application Security Procedures

 Application Security Policy

Application Security Scan Request Form

SDM Security Guidelines

 Administrator Account and Password Policy
 User Account and Password Policy

 User Account Maintenance Policy

 IT Standards Exception Policy

