This document is the Patient Care Protocols for New Hampshire Prehospital Medical Providers – Version 7.1.

These protocols are a “living document” developed and drafted by the Protocol Committee of the New Hampshire Emergency Medical Services Medical Control Board. At the option of the Bureau of EMS and the Medical Control Board, they can be edited and updated at any time. However, they are formally reviewed, edited, and released every two years.

These NH EMS Patient Care Protocols, Version 7.1 were reviewed, edited, and unanimously approved of by the NH EMS Medical Control Board.

These are New Hampshire State Patient Care Protocols; they have been written and approved of by the NH EMS Medical Control Board to establish the standard of EMS patient care. Any deviation from these protocols must be approved in writing by the NH EMS Medical Control Board and the NH Bureau of EMS.

Please Note: For visual clarity, trademark and registered symbols have not been included with drug, product, or equipment names.

Questions and comments should be directed to:

Bureau of Emergency Medical Services
33 Hazen Drive
Concord, NH 03305
603-223-4200

This document may not be amended or altered; however, it may be reproduced and distributed for free to NH EMS Providers without permission.

DISCLAIMER: Although the authors of this document have made great efforts to ensure that all the information is accurate, there may be errors. The authors cannot be held responsible for any such errors. For the latest corrections to these protocols, see the New Hampshire EMS website at: https://www.nh.gov/safety/divisions/fstems/ems/advlifesup/patientcare.html.
NH Patient Care Protocol 7.1
Updates and Corrections

April 2018:

Anaphylaxis/Allergic Reaction – Adult in the EMT section:
- Epinephrine 1mg/mL: Administer 0.3 mg (0.3 mL) IM*.

Anaphylaxis/Allergic Reaction – Pediatric was updated in the EMT section with:
- If < 25 kg, epinephrine (1 mg/mL) 0.15 mg (0.15 mL) IM*,
- If > 25 kg, epinephrine (1 mg/mL) 0.3 mg (0.3 mL)IM*.
 - For additional dosing, contact Medical Control

EMTs must have completed the Ready, Check & Inject training, click here.

The EMTs will need to complete the online training and then practice with their Medical Director or designee.

Nitronox
In the Pain Protocol Adult & Pediatric, Nitronox may only be used if patient has not received an opiate. Ketamine was added to the opiates so the bullet now reads:
- Note: Nitronox may only be used if patient has not received an opiate or ketamine.

Obstetrical Emergencies
After the release of the protocols, it was recognized that in the presence of a prolapsed cord it did not matter if a pulse was present or not, the provider should place a gloved hand in the vagina and decompress the cord by elevating the presenting fetal part off of the cord. The protocol was changed to strike the words, “If umbilical cord pulse is absent”.

TXA
Change the TXA dosing to, “Mix 1 gram of TXA in 50 – 100 mL of 0.9% NaCl”.
New Hampshire Patient Care Protocols 2017 – Table of Contents

(Alphabetical order by section)
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>Preface</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>SECTION 1 – General Patient Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine Patient Care</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Exception Protocol</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Extended Care Guidelines</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>SECTION 2 – Medical Protocols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal Pain – Adult/Pediatric</td>
<td></td>
<td>2.0A</td>
</tr>
<tr>
<td>Adrenal Insufficiency – Adult/Pediatric</td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>Allergic Reaction/Anaphylaxis – Adult</td>
<td></td>
<td>2.2A</td>
</tr>
<tr>
<td>Allergic Reaction/Anaphylaxis – Pediatric</td>
<td></td>
<td>2.2P</td>
</tr>
<tr>
<td>Asthma/COPD/RAD – Adult</td>
<td></td>
<td>2.3A</td>
</tr>
<tr>
<td>Asthma/Bronchiolitis/Croup – Pediatric Respiratory Distress</td>
<td></td>
<td>2.3P</td>
</tr>
<tr>
<td>Behavioral Emergencies – Adult/Pediatric</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>BRUE (Brief Resolved Unexplained Event)</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>Childbirth</td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>Hyperglycemia – Adult & Pediatric</td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>Hyperthermia (Environmental) – Adult & Pediatric</td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>Hypoglycemia – Adult</td>
<td></td>
<td>2.9A</td>
</tr>
<tr>
<td>Hypoglycemia – Pediatric</td>
<td></td>
<td>2.9P</td>
</tr>
<tr>
<td>Hypothermia (Environmental) – Adult & Pediatric</td>
<td></td>
<td>2.10</td>
</tr>
<tr>
<td>Nausea/Vomiting – Adult & Pediatric</td>
<td></td>
<td>2.11</td>
</tr>
<tr>
<td>Nerve Agent/Organophosphate Poisoning – Adult</td>
<td></td>
<td>2.12A</td>
</tr>
<tr>
<td>Nerve Agent/Organophosphate Poisoning – Pediatric</td>
<td></td>
<td>2.12P</td>
</tr>
<tr>
<td>Newborn Resuscitation</td>
<td></td>
<td>2.13</td>
</tr>
<tr>
<td>Obstetrical Emergencies</td>
<td></td>
<td>2.14</td>
</tr>
<tr>
<td>Pain Management – Adult</td>
<td></td>
<td>2.15A</td>
</tr>
<tr>
<td>Pain Management – Pediatric</td>
<td></td>
<td>2.15P</td>
</tr>
<tr>
<td>Poisoning/Substance Abuse/Overdose – Adult</td>
<td></td>
<td>2.16A</td>
</tr>
<tr>
<td>Poisoning/Substance Abuse/Overdose – Pediatric</td>
<td></td>
<td>2.16P</td>
</tr>
<tr>
<td>Seizures – Adult</td>
<td></td>
<td>2.17A</td>
</tr>
<tr>
<td>Seizures – Pediatric</td>
<td></td>
<td>2.17P</td>
</tr>
<tr>
<td>Sepsis – Adult</td>
<td></td>
<td>2.18A</td>
</tr>
<tr>
<td>Sepsis – Pediatric</td>
<td></td>
<td>2.18P</td>
</tr>
<tr>
<td>Shock – Non-traumatic – Adult/Pediatric</td>
<td></td>
<td>2.19</td>
</tr>
<tr>
<td>Smoke Inhalation – Adult</td>
<td></td>
<td>2.20A</td>
</tr>
<tr>
<td>Smoke Inhalation – Pediatric</td>
<td></td>
<td>2.20P</td>
</tr>
<tr>
<td>Stroke – Adult & Pediatric</td>
<td></td>
<td>2.21</td>
</tr>
<tr>
<td>Syncope</td>
<td></td>
<td>2.22</td>
</tr>
</tbody>
</table>
Section 3 – Cardiac Emergencies

<table>
<thead>
<tr>
<th>Condition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Coronary Syndrome – Adult</td>
<td>3.0</td>
</tr>
<tr>
<td>Bradycardia – Adult</td>
<td>3.1A</td>
</tr>
<tr>
<td>Bradycardia – Pediatric</td>
<td>3.1P</td>
</tr>
<tr>
<td>Cardiac Arrest – Adult</td>
<td>3.2A</td>
</tr>
<tr>
<td>Cardiac Arrest – Pediatric</td>
<td>3.2P</td>
</tr>
<tr>
<td>Congestive Heart Failure (Pulmonary Edema)</td>
<td>3.3</td>
</tr>
<tr>
<td>Post Resuscitative Care</td>
<td>3.4</td>
</tr>
<tr>
<td>Tachycardia – Adult</td>
<td>3.5A</td>
</tr>
<tr>
<td>Tachycardia – Pediatric</td>
<td>3.5P</td>
</tr>
<tr>
<td>Team Focused CPR</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Section 4 – Traumatic Emergencies

<table>
<thead>
<tr>
<th>Condition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns/Electrocution/Lightening – Adult & Pediatric</td>
<td>4.0</td>
</tr>
<tr>
<td>Drowning/Submersion Injuries – Adult & Pediatric</td>
<td>4.1</td>
</tr>
<tr>
<td>Eye & Dental Injuries – Adult & Pediatric</td>
<td>4.2</td>
</tr>
<tr>
<td>Musculoskeletal Injuries – Adult & Pediatric</td>
<td>4.3</td>
</tr>
<tr>
<td>Shock – Traumatic Adult & Pediatric</td>
<td>4.4</td>
</tr>
<tr>
<td>Spinal Injury – Adult & Pediatric</td>
<td>4.5</td>
</tr>
<tr>
<td>Thoracic Injuries – Adult & Pediatric</td>
<td>4.6</td>
</tr>
<tr>
<td>Traumatic Brain Injury – Adult & Pediatric</td>
<td>4.7</td>
</tr>
<tr>
<td>Tranexamic Acid (TXA)</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Section 5 – Airway Protocols & Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway Management Procedure</td>
<td>5.0</td>
</tr>
<tr>
<td>Airway Management Protocol – Adult</td>
<td>5.1A</td>
</tr>
<tr>
<td>Airway Management Protocol – Pediatric</td>
<td>5.1P</td>
</tr>
<tr>
<td>Cricothyrotomy – Percutaneous</td>
<td>5.2</td>
</tr>
<tr>
<td>Bi-Level Positive Airway Pressure (BiPAP)</td>
<td>5.3</td>
</tr>
<tr>
<td>Continuous Positive Airway Pressure (CPAP)</td>
<td>5.4</td>
</tr>
<tr>
<td>Endotracheal Tube Introducer</td>
<td>5.5</td>
</tr>
<tr>
<td>Nasotracheal Intubation</td>
<td>5.6</td>
</tr>
<tr>
<td>Ootracheal Intubation</td>
<td>5.7</td>
</tr>
<tr>
<td>Suction (Advanced)</td>
<td>5.8</td>
</tr>
<tr>
<td>Supraglottic Airways</td>
<td>5.9</td>
</tr>
<tr>
<td>Tracheostomy Care</td>
<td>5.10</td>
</tr>
<tr>
<td>Ventilators</td>
<td>5.11</td>
</tr>
</tbody>
</table>
New Hampshire Patient Care Protocols 2017 – Table of Contents

Section 6 – Other Medical Procedures

- 12 Lead Acquisition: Page 6.0
- Capnography: Page 6.1
- Double Sequential Defibrillation: Page 6.2
- Gastric Tube Insertion: Page 6.3
- Intraosseous Access: Page 6.4
- Restraints: Page 6.5
- Tasers: Page 6.6
- Tourniquets: Page 6.7
- Vascular Access via Central Catheter – Adult & Pediatric: Page 6.8

Section 7 – Prerequisite Protocols

- Advanced Sepsis: Page 7.0
- Immunizations: Page 7.1
- Interfacility Transfer: Page 7.2
- Mobile Integrated Healthcare: Page 7.3
- Rapid Sequence Intubations: Page 7.4
- Surgical Cricothyrotomy – Bougie Assisted: Page 7.5

Section 8 – Medical Policies

- Air Medical Transport: Page 8.0
- Baby Safe Haven: Page 8.1
- Bariatric Triage, Care, and Transport: Page 8.2
- Communications: Page 8.3
- Communications Failure: Page 8.4
- Consent for Treatment of a Minor: Page 8.5
- Continuity of Care: Page 8.6
- Crime Scene/Preservation of Evidence: Page 8.7
- DNR, POLST and Advanced Directive: Page 8.8
- Hospice: Page 8.9
- Infection Control: Page 8.10
- On-Scene Medical Personnel: Page 8.11
- Patient Status Determination: Page 8.12
- Pediatric Transportation: Page 8.13
- Police Custody: Page 8.14
- Refusal of Care: Page 8.15
- Resuscitation Initiation and Termination: Page 8.16
- Strangulation: Page 8.17
- Trauma Triage and Transport Decision: Page 8.18
- Victims of Violence: Page 8.19
- Ventricular Assist Device (VAD): Page 8.20
New Hampshire Patient Care Protocols 2017 – Table of Contents

Section 9 – Hazmat & MCI
Hazardous Material Exposure... 9.0
Mass/Multiple Casualty Triage... 9.1
Radiation Injuries – MCI... 9.2

Appendices
2017 Approved Medication by Provider Level.......................................A1
2017 EMS Adult Formulary... A2
2017 Pediatric Color Coded Appendix...A3
Pediatric Drip Rate Reference... A4
Adult Drip Rate Reference... A5
Scope of Practice... A6
POLST... A5
ACkNOWLEDGMENTS

Protocol Committee Members

Jim Suozzi, DO, Cheshire Medical Center, Chairman
Joey Scollan, MD, Elliot Hospital
Tom Trimarco, MD, Dartmouth-Hitchcock Medical Center
Christine Beres, ALS Institute
Vicki Blanchard, NH Bureau of EMS
Chip Cooper, NH Bureau of EMS
Jeanne Erickson, Speare Memorial Hospital
Michael Flynn, RPh, Monadnock Community Hospital; Walpole FD/EMS
Bette Fredrickson, Sutton Rescue Squad
Matt Fulton, Lebanon Fire Department
Bruce Goldthwaite, Franklin Fire Department
Chuck Hemeon, Derry Fire Department
Janet Houston, NH EMS for Children
Eric Jaeger, Exeter Hospital Paramedic Intercept
Michael Kelley, Bedford Fire Department
Dennis Ketner, American Medical Response
Andrew Merelman, Exeter Hospital Paramedic Intercept
Brian Nicholson, Wentworth Douglass Hospital
Clay Odell, Upper Valley Ambulance
Tim Redding, EEC Medical
Jon Snow, Bedford Fire Department
Joe Stalker, Hooksett Fire Department
Laurie Warnock, New England Poison Control Center

Members of the Medical Control Board

Kenneth Call, MD, kenneth.call@newlondonhospital.org
Trevor Eide, MD, t.eide@fmhospital.com
David Hirsch, MD, dhirsch@crhc.org
Frank Hubbell, DO, bearhubbell@aol.com
Patrick Lee, MD, drpwlee@yahoo.com
Joshua Morrison, DO, joshuapmorrison@gmail.com
Michelle Nathan, MD, mnathan1@aol.com
Joey Scollan, MD, joey.scollan@gmail.com
John Seidner, MD, jseidner@elliot-hs.com
James Suozzi, DO, JSuozzi@Cheshire-Med.com
Brian Sweeney, DO, brsweeney@sjhh.org
Tom Trimarco, MD, thomas.w.trimarco@hitchcock.org
Harry Wallus, DO, Harry.Wallus@HCAhealthcare.com
This new edition of the Protocols is dedicated to the redoubtable Janet Houston.

Janet is known far and wide as the founding mother who brought EMS for Children to New Hampshire back so long ago that some of the first children to benefit from that program are now pushing 40. The standing Janet joke in EMS circles is “OK, Janet, you win: it’s all about the children!”

But, of course, it never was all about the children. NH EMS is a beautiful, complicated machine with lots and lots of moving parts. An extraordinary number of those parts bear Janet’s maker’s mark. Janet began her EMS work in New Hampshire back in 1981 at the Region I Office in Hanover, where she wore several hats: data manager, educational materials writer and research coordinator. A decade later, Janet wrote the famous grant that got NH EMSC going, and then she kept it going through thick and thin. When our trauma system faltered, Janet leveraged EMSC funding so both pediatric and adult trauma care could keep moving ahead. Janet was instrumental in creating our first trauma registry, triage guidelines, and the first NH Trauma Conference. She spent countless hours laboring in the administrative minefield that is the Vehicle Equipment and Supplies list.

Janet was a driving force on the protocols committee for years. Ostensibly she was there to guard the interests of the children. Which she did, of course. But she also worked to develop adult protocols ranging from musculoskeletal trauma and trauma triage to fever and sepsis. She worked on educational programs for EMTs, paramedics, doctors and nurses. She advised and promoted TEMSIS. And she did a few tours of duty on one of the most emotionally taxing assignments in the state: the New Hampshire Child Fatality Review Committee.

Janet knows how to get things done. It starts with data-derived evidence, logic and clear speaking. If that by itself doesn’t turn the key, then she can apply her special mix of sophisticated political finesse and bulldog tenacity. Although Janet has earned a reputation fighting for the children, she knows well that the pen is mightier than the sword, and her greatest contribution to EMS may be . . . as a writer.

Samuel Johnson said, “No man but a blockhead ever wrote except for money.” Let’s overlook Johnson’s 18th century sexism, and apply this to EMS. You can have the finest Tesla Roadster on the planet, but if there’s no juice for the batteries – you can see where this is going – it never gets out of the barn. Janet is a brilliant grant writer. Her payoff ratio, measured in dollars per page, may be up there with Stephen King’s. But Janet isn’t doing it for herself. Nor solely ‘for the children’. Care for everyone in New Hampshire is just a bit better thanks to Janet’s prowess and persistence. All of us in NH EMS owe her for that.

Thanks for everything, Janet. As you and Pete hike off into the sunset, across the high country wherever the spirit moves you, we wish you happy trails.
Welcome to the NH EMS Patient Care Protocols Version 7. Using the best available data, we continue to improve and refine each version of the protocols to drive great patient care in the Granite State.

New Hampshire is continuing to work collaboratively with the New England states to explore the concept of standardizing our EMS protocols. In this protocol edition we have partnered with Vermont and Maine to create a “Northern New England Stroke Protocol”. We hope this is the 1st of several protocols that we can share together using the best evidence.

Historically, we have released our protocols on a two-year cycle and referenced them by the year of the release. We have changed the referencing of the protocols to “versions”; this edition of the protocols will be Version 7, as it is the 7th time we have released a statewide protocol set. If there is a protocol change mid-cycle of a complete review of the protocol set, we will reference the update as Version 7.01, etc. When the complete set has been reviewed again we will then re-reference the protocols as Version 8. As we partner with our neighboring states, we will release the NH EMS Patient Care Protocols, Version 7 on January 1, 2018. Maine and Vermont will release their EMS protocols in January as well.

We have added several protocols and medications to this edition:

- Continuity of Care protocol gives guidance to EMS providers who encounter patients with pre-existing medical devices or pre-established medication infusions) that are beyond the EMS provider’s scope of practice.
- Advanced Sepsis Pre-requisite protocol will allow services to identify patients who meet diagnostic criteria for severe sepsis and septic shock and administer broad spectrum antibiotics.
- Hospice protocol gives EMS providers guidance on how to support terminally ill patients enrolled in a hospice program.
- Ketamine has been added as an option for pain management, post intubation sedation and chemical restraint.
- Tranexamic Acid is now available for patients with signs of significant traumatic hemorrhagic shock.

For cardiac arrest care, in addition to rolling out our High Performance / Team Focused CPR and Double Sequential Defibrillation protocols, we have updated guidance on when to terminate resuscitation.

While our protocols continue to evolve, we have also kept many concepts from the past – some bear repeating: All licensed providers functioning within the New Hampshire EMS system are required to be familiar with the contents of this document pertinent to their level of training.

- It is understood that emergency medical care begins when a patient accesses the system. Telecommunications Specialists at the Bureau of Emergency Communications are integral to delivering effective care by notifying, in a timely manner, the appropriate local dispatcher, as well as by initial instructions offered via Emergency Medical Dispatch (EMD) algorithms. Information will be offered via the Medical Priority Dispatch System including dispatch determinant descriptors (i.e., Omega, Alpha, Bravo, Charlie, Delta, Echo) to local dispatchers. With local medical director approval, each EMS agency may choose what resources and type of response (i.e., lights and siren versus flow of traffic) for each dispatch determinant.

- Emergency Medical Responders will function under the EMT standing orders up to the training outlined by the United States Department of Transportation (DOT) Emergency Medical Responder curriculum.
• It is assumed that the Paramedic standing orders include those of the EMT and AEMT, likewise AEMT standing orders include all those orders listed under EMT. The sequence of orders in these protocols is not necessarily the order in which they might be executed.

• Standing orders listed in this document are not orders that must be carried out. They are orders that may be carried out at the discretion of the EMS provider without the need for on-line medical control. EMS providers at any level of training are encouraged to contact on-line medical control in cases where they feel that additional treatment is warranted beyond standing orders, cases where there is uncertainty regarding treatment (e.g., age or size appropriateness for a pediatric patient procedure), or in cases involving medico legal or jurisdictional issues.

• Emergency Medical Responders and EMT’s are encouraged to consider timely ALS involvement.

• When transferring care from one provider to another, the transfer must be to a provider of equal or higher level unless the patient’s condition and reasonably anticipated complications can be effectively managed by a lower level provider’s scope of practice. For example, a paramedic who is a member of a non-transporting agency may transfer care of a patient with an uncomplicated ankle injury to an EMT for transport. On the other hand, a patient who is treated on the scene by a paramedic for active seizures shall only have care transferred to another paramedic.

• While medical control may have some variation from facility to facility, on-line medical control should not direct providers to practice outside their usual scope of practice, and likewise, providers should not ask to perform procedures or administer medications outside their scope of practice as defined within these protocols.

• Multiple medications are sometimes listed to provide options for treatment. While the first medication listed is considered the “preferred agent”, the list is intended to provide latitude to medical directors and medical resource hospitals to choose which medications an EMS agency under its direction may carry. It will also help us deal with ongoing medication shortages. There is no intent that all listed medications should be carried.

• We will be using the New Hampshire EMS and Fire Distance Learning Environment (NHOODLE) for the protocol rollout again this year. Providers can complete this at a time and place that’s convenient for them. The rollout module must be completed prior to utilizing the new protocols.

I would like to thank the members of the Protocol Subcommittee, The Medical Control Board and Bureau of EMS staff for their ongoing dedication and countless hours spent developing and revising these protocols.

Finally, I would like to thank our EMS providers across the state. Your work is physically strenuous, stressful, involves human suffering and at times life-or-death crises. You provide care with pride, skill and compassion, at home, work, indoors and out, in all types of weather, 24 hours a day, 365 days a year. Please remember, what you do matters!

Sincerely:

Jim Suozzi, DO, NRP, FACEP
Medical Director
NH Bureau EMS
Emergency Medical Dispatch

Emergency Medical Care begins when 911 or a dispatch center is called. Telecommunications Specialists that are certified in Emergency Medical Dispatch (EMD) with the New Hampshire Bureau of Emergency Communications serve as the “First, First Responders” and are an integral part of the EMS system. They are the first-activated professional link in the chain of survival for cardiac arrest care and provide vital interim care pending EMS arrival. New Hampshire currently uses the Medical Priority Dispatch System (MPDS). Some of the Telecommunication Specialists’ functions include:

- Timely notification to local dispatch centers.
- Systematized caller interrogation and pre-arrival instructions using scripted protocols.
- Triage emergency medical calls by level of medical acuity and provide dispatch centers with standardized dispatch determinants (i.e., Omega, Alpha, Bravo, Charlie, Delta, Echo).
- With local medical director approval, each EMS agency may choose what resources and type of response (i.e., lights and sirens versus flow of traffic) for each dispatch determinant.

Respond to Scene in a Safe Manner

- Review dispatch information.
- Use lights and sirens and/or pre-emptive devices when responding as appropriate per emergency medical dispatch information and local guidelines.
- Use Incident Management/Command System (IM/CS) for all responses and scene management.

Scene Arrival and Size-up

Universal precautions, scene safety, environmental hazards assessment, number of patients, need for additional resources, and bystander safety. Initiate Mass Casualty Incident procedures as necessary.

Patient Approach

- Determine mechanism of injury / nature of illness.
- Determine if pediatric protocols apply. "Pediatric Patient" is defined as a child who fits on a length-based resuscitation tape up to 36 kg (79 lbs) or 145 cm (57 in).
- Establish responsiveness.
- General Impression.

- Determine if DNR/Comfort Care protocol applies (DNR Policy).

Airway and Breathing

- Airway
 - Assess the patient for a patent airway.
 - Open the airway using a head-tilt/chin-lift, or a jaw thrust if suspicious of cervical spine injury.
 - Suction the airway as needed.
 - Treat foreign body obstruction in accordance with current guidelines.
 - Consider an oropharyngeal or nasopharyngeal airway.
 - Consider advanced airway interventions as appropriate and as trained and credentialed to perform.

- Assess breathing: rate, effort, tidal volume, and breath sounds.
 - If breathing is inadequate, ventilate with 100% oxygen using Bag-Valve-Mask.
 - If breathing is adequate, but patient’s oxygen saturation remains ≤ 94% (≤ 90% for COPD patient) or short of breath, administer oxygen.
 - Both skin signs and pulse oximetry are important in assessing potential hypoxia.
 - For patients with an SpO₂ of 100%, consider titrating oxygen lower while maintaining SpO₂ ≥ 94%.
 - Consider capnography (EtCO₂) and/or CO-oximetry, if available.
 - Assess lung sounds and chest.
Circulation Assessment

- Assess patient’s pulse, noting rate, rhythm, and quality.
- Control active bleeding using direct pressure, pressure bandages, tourniquets, or hemostatic bandages.
 - Hemostatic bandages must be of a non-exothermic type that can be washed off with 0.9% NaCl (normal saline).
 - Assess patient’s skin color, capillary refill, temperature, and moisture.
- Provide IV access and fluid resuscitation as appropriate for the patient’s condition.
 - For adult patients, administer fluids to maintain systolic blood pressure per the Shock Protocols 2.18A, 2.19, 4.4.
 - For pediatric patients, administer fluids based on physiological signs and therapeutic endpoints per the Shock Protocol 2.18P, 2.19, 4.4.
 - For adult patients with suspected dehydration without shock administer IV fluids as indicated in increments of 250 mL 0.9% NaCl.
- Consider obtaining a blood sample, per receiving hospital’s preference.

NOTE: An IV for the purposes of these protocols is a saline lock or line with 0.9% NaCl (normal saline), unless otherwise specified in an individual protocol.

Routes of medication administration when written as “IV” can also include “IO”.

Disability Assessment

- Assess level of consciousness appropriate for age; use Glasgow Coma Scale for trauma.
- Spinal motion restriction by collaring patient, placing flat on cot and securing, if indicated by Spinal Injury Protocol 4.5.
- If a child requires spinal motion restriction, transport in a child safety seat (See Spinal Trauma 4.5 and Pediatric Transportation 8.13).

Transport

- The destination hospital and mode of transport are determined by the prehospital provider with the highest medical level providing patient care; it should not be determined by fire, police or bystanders.
- Refer to the Trauma Triage and Transport Decision 8.18 and Air Medical Transport 8.0 policies as necessary.
- Notify receiving facility as early as possible.
- The majority of patients do not medically require transport with lights and sirens. Lights and sirens should be justified by the need for immediate medical intervention that is beyond the capabilities of the ambulance crew using available supplies and equipment, (e.g. STEMI, acute stroke, multi-system trauma). Use of lights and sirens should be documented in the patient care report.
- Non emergent medical transports from home or a medical facility with self or caretaker managed devices is an EMT level skill. The caretaker must travel with the patient if it is not a self managed device.

Secondary/Focused Assessment and Treatment

- Obtain chief complaint, history of present illness, and prior medical history.
- Complete a physical assessment as appropriate for the patient’s presentation.
- Determine level of pain.
- Consider field diagnostic tests including: cardiac monitoring, blood glucose, temperature, stroke assessment, pulse oximetry, capnography, etc.
- Dress and bandage lacerations and abrasions.
- Cover evisceration with an occlusive dressing and cover to prevent heat loss.
- Stabilize impaled objects. Do not remove an impaled object unless it interferes with CPR or your ability to maintain the patient’s airway.
- Monitor vital signs approximately every 15 minutes (more frequently if the patient is unstable).
* Ventilation rates should be titrated to goal EtCO₂, if available, or patient conditions (e.g., severe asthma, aspirin overdose, traumatic brain injury)

Note: In children, pulse oximetry may identify clinically significant hypoxia that may be missed through evaluation of skin signs alone.

<table>
<thead>
<tr>
<th>Percent O₂ Saturation</th>
<th>Ranges</th>
<th>General Patient Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>94% – 100 %</td>
<td>Normal</td>
<td>Usually indicate adequate oxygenation; validate with clinical assessment (see below)</td>
</tr>
<tr>
<td>90% – 93%</td>
<td>Mild hypoxia</td>
<td>Consider O₂ to maintain saturation ≥ 94 - 99%. Caution in COPD patients</td>
</tr>
<tr>
<td>Less than 90%</td>
<td>Moderate to severe hypoxia</td>
<td>Give oxygen to maintain saturation ≥ 94 - 99%, as needed</td>
</tr>
</tbody>
</table>

Notes:
- If pulse oximeter’s heart rate is not the same as ECG monitor’s heart rate, oxygen saturation reading may not be reliable.
- If patient is profoundly anemic or dehydrated, oxygen saturation may be 100%, but patient may be hypoxemic.
- False pulse oximetry readings may occur in the following: hypothermia, hypoperfusion, carbon monoxide poisoning, hemoglobin abnormality (sickle cell anemia), vasoconstriction, and nail polish.

<table>
<thead>
<tr>
<th>EtCO₂ Reading</th>
<th>Ranges</th>
<th>General Patient Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 mmHg – 45 mmHg</td>
<td>Normal</td>
<td>Usually indicate adequate ventilation; validate with clinical assessment (see below)</td>
</tr>
<tr>
<td>Greater than 45 mmHg</td>
<td>Hypercarbia</td>
<td>Consider increasing ventilatory rate, assess adjuncts for occlusions</td>
</tr>
<tr>
<td>Less than 35 mmHg</td>
<td>Hypocarbia</td>
<td>Consider slowing ventilatory rate</td>
</tr>
</tbody>
</table>

Pediatric Respiratory Distress
- Able to maintain adequate oxygenation by using extra effort to move air.
- Signs include increased respiratory rate, sniffing position, nasal flaring, abnormal breath sounds, head bobbing, intercostal retractions, mild tachycardia.

Pediatric Respiratory Failure
- Hallmarks of respiratory failure are respiratory rate less than 20 breaths per minute for children <6 years old; less than 12 breaths per minute for children <16 years old; and >60 breaths per minutes for any child; cyanosis, marked tachycardia or bradycardia, poor peripheral perfusion, decreased muscle tone, and depressed mental status.

Respiratory distress in children and infants must be promptly recognized and aggressively treated as patient may rapidly decompensate.

When a child tires and is unable to maintain adequate oxygenation, respiratory failure occurs and may lead to cardiac arrest.

<table>
<thead>
<tr>
<th>Motor Response</th>
<th>Score</th>
<th>Verbal Response</th>
<th>Verbal - Infants</th>
<th>Score</th>
<th>Eye Response</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obeyes commands/spontaneous</td>
<td>6</td>
<td>Oriented and alert</td>
<td>Babbles</td>
<td>5</td>
<td>Open</td>
<td>4</td>
</tr>
<tr>
<td>Localizes pain</td>
<td>5</td>
<td>Disoriented</td>
<td>Irritable</td>
<td>4</td>
<td>To voice</td>
<td>3</td>
</tr>
<tr>
<td>Withdraws to pain</td>
<td>4</td>
<td>Inappropriate words</td>
<td>Cries to pain</td>
<td>3</td>
<td>To Pain</td>
<td>2</td>
</tr>
<tr>
<td>Decorticate flexion</td>
<td>3</td>
<td>Moans, unintelligible</td>
<td>Moans</td>
<td>2</td>
<td>No response</td>
<td>1</td>
</tr>
<tr>
<td>Decerebrate extension</td>
<td>2</td>
<td>No response</td>
<td>No response</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No response</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glasgow Coma Scale
"Exception Principle" of the Protocols

- The Statewide Patient Care Protocols represent the best efforts of the EMS physicians and pre-hospital providers of New Hampshire to reflect the current state of out-of-hospital emergency medical care, and as such should serve as the basis for such treatment.

- For situations covered by existing protocols, providers are expected to operate under those protocols. This exception protocol may not be used to circumvent protocols or directives of the Medical Control Board (e.g., Medication Assisted Intubation). We recognize, though, that on rare occasion good medical practice and the needs of patient care may require actions not otherwise authorized by these protocols, as no protocol can anticipate every clinical situation. In those circumstances, under this Exception Principle, EMS personnel are authorized to take actions not otherwise explicitly authorized under these protocols provided that:
 1. Such action is within their current EMS certification, licensure level, and scope of practice, AND
 2. They have obtained the approval of online medical control.

- This exception is intended only to be used when unanticipated clinical situations arise. This Exception Principle is not intended to cover advancements in medical science or emerging changes or improvements to existing protocols. These advancements should be evaluated based on the best available evidence under our existing process for protocol review. For example, providers who believe that intra-cardiac arrest cooling has beneficial effects may not implement that action under the Exception Principle. They should instead submit their desire to see the existing protocol modified in the next protocol cycle to the protocol subcommittee of the Medical Control Board.

- Where a patient has a medical condition that cannot be appropriately treated under the existing protocols, and has provided the provider with a written treatment plan prepared by the patient’s physician and approved by the provider’s medical control physician, the provider may perform the treatments prescribed in the treatment plan provided they are within their level and scope of practice. This specific instance would not require online medical control.

- Actions taken under this policy are considered to be appropriate and within the scope of the protocols. The EMS provider shall provide a written notification pertaining to the action taken describing the events including the patient’s condition and treatment given, and referencing the EMS Incident Report. This report must be filed with the Medical Resource Hospital’s EMS Medical Director, Hospital EMS Coordinator, and Bureau of EMS within 48 hours of the event. Use of this protocol must be documented under “Protocols Used” in the Patient Care Report.
When NH EMS providers treat patients in remote or difficult environments and ambulance transport to hospital care is significantly delayed, it may be necessary to provide extended patient care. Extended care applies to any low resource setting where access to definitive care is delayed or impossible. This may be due to a remote location or infrastructure destruction.

Extended care patients may require repeat administration of medications beyond what is specified in regular protocols or assistance with administration of the patient’s prescribed medication. Patients may also require some treatments and procedures that clearly exceed the scope of NH EMS providers licensed at the EMT, Advanced and Paramedic levels.

In an extended care environment, EMS providers will follow the following guidelines:

1. Every effort should be made to contact medical control for guidance.

2. If medical control is unavailable, it is reasonable to administer repeat medication dosing at the same intervals as prescribed in protocol or as prescribed for patient’s own medications. Caution must be used due to cumulative effects that may result in over-sedation, hypotension, respiratory depression, etc.

3. If changes to regular protocol are necessary for medication use in extended care situations, these changes appear in the specific protocol under a separate Extended Care Section denoted by an X.

4. Any other treatment or procedure outside the provider’s normal scope of practice requires additional levels of training and certification from nationally recognized courses as deemed appropriate per the NH Bureau of EMS. (An example of a procedure that would require additional training and certification would be the reduction of dislocations).

Special circumstances to consider in an extended care environment:
- Protecting patient from the environment while awaiting extrication and/or transport. This may require an improvised shelter and insulation to protect the patient and providers from rain, snow and wind.
- Requesting additional resources/personnel early if an extended care call is suspected. Resources to consider but are not limited to:
 - NH Fish and Game
 - Rescue organizations
 - Technical Climbers
 - Snowmobile, ATV or boat
 - Helicopters
 - Tracking dogs
 - Swift water technicians
- Oral fluids to maintain a patient’s hydration and high energy foods to maintain caloric requirements, if the patient is conscious and able to swallow.
- Limited resources due to difficulty accessing patient and/or transporting equipment to the patient’s location. These resources may include:
 - Oxygen
 - Suction
 - Cardiac Monitor/AED
 - Pulse Oximetry
 - Capnography
 - Glucose Meter
 - BP Cuff and Stethoscope
 - Intravenous access
 - Medications
 - Communication with online medical control.
2.0A Abdominal Pain (Non Traumatic) Adult

EMT STANDING ORDERS
- Routine Patient Care.
- Consider acquiring and transmitting a 12-Lead ECG for upper abdominal or epigastric pain, see [12-Lead Acquisition Protocol 6.0](#).
- Vaginal bleeding or suspected pregnancy see, [Obstetrical Emergencies Protocol 2.14](#).

ADVANCED EMT STANDING ORDERS
- If patient is hypotensive, consider fluid per [Shock – Non-traumatic Protocol 2.19](#).

PARAMEDIC STANDING ORDERS
- See [Pain Management Protocol 2.15A](#).
- See [Nausea/Vomiting Protocol 2.11](#).
- Assess and monitor cardiac rhythm.

PEARLS:
- Common causes of acute abdominal pain may be appendicitis, cholecystitis, bowel perforation, diverticulitis, abdominal aortic aneurysm, ectopic pregnancy, pelvic inflammatory disease and pancreatitis.
- It is important to remember that abdominal pain can be caused by a number of different disease processes. Pain may originate from the esophagus, stomach, intestinal tract, liver, gall bladder, pancreas, spleen, kidneys, male or female reproductive organs or urinary bladder. Referred pain from the chest may involve the heart, lungs and pleura.
- Patients with abdominal pain and signs and symptoms of shock may have severe electrolyte abnormalities. This may result in cardiac arrhythmias which can be life threatening.
- Abdominal pain in women of child bearing age should be treated as an ectopic pregnancy until proven otherwise.
- Myocardial infarction can present with abdominal pain especially in the diabetic and elderly.
- DKA may present with abdominal pain, nausea and vomiting. Check blood sugar.
- The diagnosis of abdominal aneurysm should be considered with abdominal pain in patients over 50 years old.
PEACE: Medical Protocol 2.1

PEACE:

P
- Stress Dose:
 - Adult: History of adrenal insufficiency; administer hydrocortisone 100 mg IV/IM.
 - Pediatric: History of adrenal insufficiency; administer hydrocortisone 2 mg/kg, to a maximum of 100 mg IV/IM.

E
- Routine Patient Care.
- Identify and treat the underlying condition.
- Consider paramedic intercept.

A
- Assist the patient/caregiver in giving the patient his or her own medications, as prescribed.

C
- After the initial hydrocortisone (100 mg IV/IM), give hydrocortisone 50 mg IV bolus administered every 6 hours until stabilization of vital signs and capacity to eat and take medication orally.
 - Pediatric: 2 mg/kg IV/IM every 6 hours to a maximum single dose of 100 mg.
- In patients with the following signs and symptoms consider the need for repeat stress dosing:
 - Nausea, vomiting, weakness, dizziness, abdominal pain, muscle pain, dehydration, hypotension, tachycardia, fever, mental status changes.
- Additional Considerations:
 - Aggressive volume replacement therapy.
 - Vasopressors may be needed to treat refractory hypotension, see Shock – Non-Traumatic Protocol 2.19.
 - Treat for hypoglycemia, see Hypoglycemia Protocol 2.9A or 2.9P.
 - Normalize body temperature.

E
- Adrenal insufficiency results when the body does not produce the essential life-sustaining hormones cortisol and aldosterone, which are vital to maintaining blood pressure, cardiac contractility, water, and salt balance. Chronic adrenal insufficiency can be caused by a number of conditions:
 - Congenital or acquired disorders of the adrenal gland
 - Congenital or acquired disorders of the pituitary gland
 - Long-term use of steroids (COPD, asthma, rheumatoid arthritis, and transplant patients)
Acute adrenal insufficiency can result in refractory shock or death in patients on a maintenance dose of hydrocortisone (SoluCortef)/prednisone who experience illness or trauma and are not given a stress dose and, as necessary, supplemental doses of hydrocortisone.

A
- Adrenal insufficiency can be caused by a number of conditions:
 - Congenital or acquired disorders of the adrenal gland
 - Congenital or acquired disorders of the pituitary gland
 - Long-term use of steroids (COPD, asthma, rheumatoid arthritis, and transplant patients)
Acute adrenal insufficiency can result in refractory shock or death in patients on a maintenance dose of hydrocortisone (SoluCortef)/prednisone who experience illness or trauma and are not given a stress dose and, as necessary, supplemental doses of hydrocortisone.
For anaphylaxis, administer:

- Adult epinephrine autoinjector 0.3 mg IM OR
- Epinephrine 1mg/1mL: Administer 0.3 mg (0.3 mL) IM*.
 - For additional dosing, contact Medical Control.
*EMTs must have completed the Ready, Check & Inject training, click here.

For nausea or vomiting see Nausea/Vomiting Protocol 2.11.

Do not delay transport.

After epinephrine has been administered or for isolated skin symptoms of allergic reaction consider:

- Diphenhydramine 25 – 50 mg IM/IV/PO.

For anaphylaxis refractory to 3 or more doses of IM epinephrine, (e.g., persistent hemodynamic compromise, bronchospasm), consider:

- Epinephrine infusion 2 - 10 micrograms/minute until symptoms resolve, pump required.

CAUTION: Epinephrine is available in different routes and concentrations. Providers are advised to re-check the dosing and concentration prior to administration.

In anaphylaxis, epinephrine should not be delayed by taking the time to administer second-line medications such as diphenhydramine.

PEARLS:
Allergic reactions are commonly a response to an allergen involving the skin.
Anaphylaxis: known/likely allergen exposure AND hypotension or respiratory compromise.
Signs of anaphylaxis also include:

- Angioedema: facial/lip/tongue swelling, throat tightening, voice change.
- Breathing: shortness of breath, wheeze, stridor, cyanosis.
- Poor perfusion: altered mental status, syncope, delayed capillary refill, hypotension.
- Rash: Hives, itching, extremity swelling.
- Gastrointestinal: vomiting, abdominal pain, diarrhea.
READY, CHECK, INJECT
Protocol for Administering Epinephrine for Acute Anaphylaxis

1. READY
* Adult Dose: 0.3 mL
** Pediatric Dose (<55lbs/<25kg): 0.15 mL

- Wear gloves
- Use 1mL syringe with 1” needle
- Use only 1mg/1mL epinephrine

2. CHECK
Check volume of medication in syringe by comparing to diagram below. (Diagram to scale)
Use Cross Check, with another person if possible, to confirm the proper dose. (SEE REVERSE)

Pediatric Dose: 0.15 mL

Align plunger here

Adult Dose: 0.3 mL

Align plunger here

3. INJECT
* Inject medication intramuscularly only.

Identify patient’s mid-thigh. Expose skin if possible.
Flatten skin of mid-thigh with thumb and forefinger. Insert needle quickly at a 90° angle to mid-thigh.
Depress plunger slowly to inject entire dose of medication.
Remove syringe and dispose in proper sharps container.
This protocol is designed to be performed by two people.

If a second person is not available, pause at each step, think and confirm before moving to next step.

All steps should be confirmed prior to administering the injection.

Correct Medication:

Epinephrine 1 mg / 1 mL

Correct Dose:

- Adult: 0.3 mL
- Pediatric: 0.15 mL

Inspect Syringe:

Compare against visual reference (SEE REVERSE)

Visually inspects and confirms correct volume

IF CONFIRMATION COMPLETE

INJECT
EMT STANDING ORDERS
- Routine Patient Care.
- For anaphylaxis administer: (anterolateral thigh preferred administration site)
 - Pediatric epinephrine autoinjector (EpiPen Jr) 0.15 mg IM for < 25 kg,
 - Adult epinephrine autoinjector (EpiPen) 0.3 mg IM if > 25 kg OR
 - If < 25 kg, epinephrine (1 mg/mL) 0.15 mg (0.15 mL) IM*.
 - If > 25 kg, epinephrine (1 mg/mL) 0.3 mg (0.3 mL)IM*.
 - For additional dosing, contact Medical Control

*EMTs must have completed the Ready, Check & Inject training, click here.
- For nausea or vomiting see Nausea/Vomiting Protocol 2.11
- Do not delay transport.

ADVANCED EMT STANDING ORDERS
- For anaphylaxis:
 - Repeat epinephrine every 5 minutes until signs and symptoms resolve.
 - For respiratory symptoms / wheezing consider albuterol 2.5 mg via nebulizer. Repeat albuterol 2.5 mg, every 5 minutes (4 doses total) via nebulizer.
 - For signs of shock consider fluid per Shock – Non-Traumatic Protocol 2.19.

PARAMEDIC STANDING ORDERS
- After epinephrine has been administered or for isolated skin symptoms of allergic reaction consider:
 - Diphenhydramine 1.25 mg/kg PO OR
 - Diphenhydramine 1 mg/kg IV/IM (maximum dose 50 mg).
- For anaphylaxis refractory to 3 or more doses of IM epinephrine, (e.g., persistent hemodynamic compromise, bronchospasm) consider:
 - Epinephrine Infusion 0.1 - 2 micrograms/kg/minute (maximum 10 micrograms/ min) via pump until symptoms resolve.

EMT/ADVANCED EMT EXTENDED CARE ORDERS
- Diphenhydramine:
 - Ages 6 to 11 years: 12.5 – 25 mg by mouth. May repeat every 4-6 hours as needed; maximum dose of 150 mg in 24 hours.
 - Ages 2 to 5 years: 6.25 mg by mouth. May repeat every 4-6 hours as needed; maximum dose of 37.5 mg in 24 hours.

PARAMEDIC EXTENDED CARE ORDERS
- Dexamethasone 0.6 mg/kg PO/IM/IV (PO preferred) maximum 10 mg OR
- Methylprednisolone 1 mg/kg IV (maximum dose 125 mg).

CAUTION: Epinephrine is available in different routes and concentrations. Providers are advised to re-check the dosing and concentration prior to administration.

In anaphylaxis, epinephrine should not be delayed by taking the time to administer second-line medications such as diphenhydramine.

PEARLS:
Allergic reactions are commonly a response to an allergen involving the skin.
Anaphylaxis: known/likely allergen exposure AND hypotension or respiratory compromise.
Signs of anaphylaxis also include:
- Angioedema: facial/lip/tongue swelling, throat tightening, voice change.
- Breathing: shortness of breath, wheeze, stridor, cyanosis.
- Poor perfusion: altered mental status, syncope, delayed capillary refill, hypotension.
- Rash: Hives, itching, extremity swelling.
- Gastrointestinal: vomiting, abdominal pain, diarrhea.
Routine Patient Care.
- Attempt to keep oxygen saturation between 94 - 99% (90% in COPD); increase the oxygen rate with caution and observe for fatigue, decreased mentation, and respiratory failure.
- Assist the patient with his/her metered dose inhaler (MDI): 4 - 6 puffs.
 - May repeat every 5 minutes, as needed.
 - MDI containing either albuterol, levalbuterol, or a combination of albuterol/ipratropium bromide.

Consider:
- Methylprednisolone 125 mg IV OR
either albuterol, levalbuterol, or a combination of albuterol/ipratropium bromide.
- Dexamethasone 10 mg IV

Advanced EMT Standing Orders
- Consider DuoNeb unit dose OR albuterol 2.5 mg and ipratropium bromide 0.5 mg via nebulizer.
 - Consider additional DuoNeb, may repeat every 5 minutes (3 doses total).
- Consider albuterol 2.5 mg via nebulizer every 5 minutes, as needed
- For patients who do not respond to treatments, or for impending respiratory failure, consider:
 - CPAP up to a maximum of 15 cm H₂O pressure support. (See CPAP Procedure 5.4)

Paramedic Standing Orders
 Consider:
- Methylprednisolone 125 mg IV OR
- Dexamethasone 10 mg IV

For patients who do not respond to treatments, or for impending respiratory failure, consider:
- Epinephrine (1 mg/mL) 0.3 mg (0.3 ml) IM, lateral thigh preferred.
- Magnesium sulfate 2 grams in 100 ml NS given IV over 10 minutes.
- For patients who do not respond to treatments, or for impending respiratory failure, consider BiPAP, (See BiPAP Procedure 5.3)

Pearls:
- Chronic obstructive pulmonary disease (COPD) refers to a group of lung diseases that block airflow and make breathing difficult. Emphysema and chronic bronchitis are the two most common conditions that make up COPD.
- Reactive Airway Disease (RAD) refers to a group of conditions that include reversible airway narrowing due to external stimulation.
- Beware of patients with a “silent chest” as this may indicate severe bronchospasm and impending respiratory failure.
Consider differential diagnosis:
- Asthma
- Pneumonia (See CPAP for respiratory failure)
- Bronchiolitis
- Anaphylaxis (See Anaphylaxis Protocol 2.)

Routine Patient Care.
- Attempt to keep oxygen saturation between 94% - 99%
- Observe for fatigue, decreased mentation, and respiratory failure.
- Assist the patient with his/her metered dose inhaler (MDI): 4 - 6 puffs.
 - May repeat every 5 minutes, as needed.
 - MDI containing either albuterol, levalbuterol, or a combination of albuterol/ipratropium bromide.
- For patients ≤ 2 who present with increased work of breathing and rhinorrhea, provide nasal suctioning with saline drops and bulb syringe; no more than 2 attempts.

For patients ≥ 2 years or history of asthma:
- Consider Unit dose DuoNeb OR albuterol 2.5 mg and ipratropium bromide 0.5 mg via nebulizer.
 - Consider additional DuoNeb, may repeat every 5 minutes (3 doses total).
 - Consider albuterol 2.5 mg via nebulizer every 5 minutes, as needed.
 - For patients who do not respond to treatments, or for impending respiratory failure:
 - Consider CPAP 5.4 Procedure.

For patients < 2 years old:
- Consider:
 - Dexamethasone 0.6 mg/kg PO/IM/IV (PO preferred), maximum 10 mg OR
 - Methylprednisolone 2 mg/kg IV/IM, maximum 125 mg.
For patients who do not respond to treatment or for impending respiratory failure consider:
 - Magnesium sulfate 40 mg/kg in 100ml 0.9% NaCl IV over 20 minutes.
 - Epinephrine:
 - If < 25 kg, epinephrine (1 mg/mL) 0.15 mg IM, lateral thigh preferred.
 - If > 25 kg, epinephrine (1 mg/mL) 0.3 mg IM, lateral thigh preferred.

For patients who do not respond to suctioning or for impending respiratory failure consider:
- Nebulized epinephrine (1 mg/mL) 3 mg (3 mL) in 3 mL 0.9% NaCl.

For patients with stridor at rest:
- Nebulized epinephrine (1 mg/mL) 3 mg (3 mL) in 3 mL 0.9% NaCl.

Respiratory distress in children must be promptly recognized and aggressively treated. Respiratory arrest is the most common cause of cardiac arrest in children. A child with a “silent chest” may have severe bronchospasm with impending respiratory failure.
PEARLS
- The IV formulation of dexamethasone may be given by mouth.
- For suspected epiglottitis, transport the patient in an upright position and limit your assessment and interventions.

Bronchiolitis
- Incidence peaks in 2-6 month old infants.
- Frequent history of low-grade fever, runny nose, and sneezing.
- Signs and symptoms include: tachypnea, rhinorrhea, wheezes and / or crackles.

Croup
- Incidence peaks in children over age 6 months.
- Signs and symptoms include: hoarseness, barking cough, inspiratory stridor, signs of respiratory distress.
- Avoid procedures that will distress child with severe croup and stridor at rest.

Pneumonia
- Signs and symptoms include: tachypnea, fever, intercostal retractions, cough, hypoxia and chest pain.

Tachypnea in children is defined as:
- < 2 months: 60 bpm
- 2-12 months: 50 bpm
- 1-5 years: 40 bpm
- >5 years: 20 bpm
EMT/ADVANCED STANDING ORDERS- ADULT & PEDIATRIC

- Routine Patient Care.
- Approach patient using the SAFER Model.
- Observe and record the patient’s behavior.
- Consider associated domestic violence or child abuse, see Victims of Violence Policy 8.19.
- Determine if patient is under the care of mental health professionals and record contact information.
- Assess for risk to self and others. Ask patient directly if they are thinking about hurting self or others.

A patient who is a danger to self or others may not refuse care. Contact police if unable to convince patient to be transported. (Refer to Police Custody Policy 8.14, Refusal of Care Policy 8.15, and/or Restraints Procedure 6.5).

- If the patient does not appear to be an immediate threat to self or others and refuses transport:
 - Encourage patient to seek mental health evaluation.
 - Provide the mental health center emergency services number 1-800-273-TALK (8255).
 - Avoid leaving the patient alone, if possible. Assist in contacting responsible family/friend.

For patient with suspected Excited/Agitated Delirium:
- Treat hyperthermia, see Hyperthermia Protocol 2.8.
- Monitor cardiac activity and oxygen levels.

PARAMEDIC STANDING ORDERS – ADULT & PEDIATRIC

See Restraints Procedure 6.5

SAFER Model
S Stabilize the situation by lowering stimuli, including voice.
A Assess and acknowledge crisis by validating patient’s feelings and not minimizing them.
F Facilitate identification and activation of resources (clergy, family, friends, or police).
E Encourage patient to use resources and take actions in his/her best interest.
R Recovery/referral - leave patient in the care of a responsible person, professional or transport to appropriate medical facility. Do not leave the patient alone when EMS clears the scene.

PEARLS:
Consider all possible medical / trauma causes for behavior and treat appropriately:
- Hypoglycemia
- Head Injury, stroke, seizure (post-ictal)
- Poisoning, substance abuse, drug, alcohol
2.5 Brief Resolved Unexplained Event (BRUE)

Brief Resolved Unexplained Event (BRUE) – formerly known as ALTE

An event occurring in an infant < 1 year old when the observer reports a sudden, brief and now resolved episode of 1 or more of the following:

- Cyanosis or pallor
- Absent, decreased or irregular breathing
- Marked change in tone (hyper or hypotonia)
- Altered level of responsiveness.

EMT/ADVANCED/PARAMEDIC STANDING ORDERS

- Routine Patient Care.
- Perform blood glucose analysis and manage per Hypo/Hyperglycemia Protocols 2.7 & 2.9P.
- Obtain history of event with particular attention to:
 - Activity at onset and history of the event
 - State during the event (cyanosis, apnea, coughing, gagging, vomiting)
 - End of the event (duration, gradual or abrupt cessation, treatment provided)
 - Infant’s condition after the event (normal, not normal)
 - Recent history (illness, injuries, exposure to others with illness, use of OTC medications, recent immunizations, new or different formula).
 - Past medical history (gestational age, pre-/perinatal history, GERD, seizures, previous BRUE).
 - Family history (sudden unexplained deaths, prolonged QT, arrhythmias).
 - Medications present in the residence
 - Sleeping position
 - Co-sleeping with parent in the same bed.
- Transport patient to the hospital.

Although children who experience BRUE may have a normal physical exam upon assessment by prehospital personnel, they should be transported to the emergency department for further assessment and treatment as they often have a serious underlying condition. Assume history provided by the family/witness is accurate.

PEARLS

- BRUE is not a disease, but a symptom. Common etiologies include central apnea (immature respiratory center), obstructive apnea (structural), GERD (laryngospasm, choking, gagging), respiratory (pertussis, RSV), cardiac (CHD, arrhythmia), seizures.
- Always consider non-accidental trauma in any infant who presents with BRUE, see Victims of Violence Protocol 8.20.
EMR/EMT/ADVANCED EMT STANDING ORDERS

- Routine Patient care.
- Obtain obstetrical (OB) history.
- If delivery not imminent place mother in left-lateral recumbent position.
- Expose as necessary to assess patient.
- Determine if signs of imminent delivery are present. If not present, proceed with transport to hospital with OB capability.
- Do not digitally examine or insert anything into the vagina.
- If obstetrical complication is present, consider contacting Medical Control and transport to nearest appropriate hospital per local OB Diversion Protocol. (See Obstetrical Emergencies Protocol 2.14)
- Assist in newborn’s delivery.
 - With palm of hand, apply gentle perineal pressure for a slow, controlled delivery.
 - As the baby’s head begins to emerge support the head as it turns. Do not pull on head.
 - If membranes still cover head after it emerges, tear membrane with fingers to permit escape of fluid.
 - If umbilical cord is wrapped around infant’s neck, slip the cord over head prior to delivery. If after multiple attempts you are unable to slip cord off the neck, clamp and cut the cord between the clamps.
 - Guide the baby’s head downward to allow delivery of the upper shoulder.
 - Then guide the baby’s head upward to allow delivery of the lower shoulders.
 - Delivery of trunk and legs occurs quickly; be prepared to support infant as it emerges.

For newborns requiring resuscitation, see Newborn Resuscitation Protocol 2.13. Prevent heat loss by rapidly drying and warming:
- Remove wet linen
- For stable newborn and mother, place newborn skin-to-skin on the mother’s chest or abdomen.
 - Wrap newborn and mother in blankets or silver swaddler/space blanket (preferred) and cover newborn’s head.

- Assess airway by positioning and clearing secretions (only if needed):
 - Place the newborn on back or side with head in a neutral or slightly extended position.
 - Routine suctioning is discouraged even in the presence of meconium-stained amniotic fluid. Suction oropharynx then nares only if the patient exhibits respiratory depression and/or obstruction, see Newborn Resuscitation Protocol 2.13.

- Assess breathing by providing tactile stimulation:
 - Flick soles of feet and/or rub the newborn’s back.
 - If newborn is apneic or has gasping respirations, nasal flaring, or grunting, proceed to Newborn Resuscitation Protocol 2.13.

- Assess circulation, heart rate, and skin color:
 - Evaluate heart rate by one of several methods:
 - Auscultate apical beat with a stethoscope.
 - Palpate the pulse by lightly grasping the base of the umbilical cord.
 - If the pulse is <100 bpm and not increasing, proceed to Newborn Resuscitation Protocol 2.13.
 - Assess skin color: examine trunk, face and mucus membranes.
 - Assess temperature
 - Record APGAR score at 1 minute and 5 minutes (see chart).

- See Pediatric Color Coded Appendix A3 for vital signs.
Childbirth & Newborn Care

EMR/EMT/ADVANCED EMT STANDING ORDERS
- Clamp and cut the umbilical cord:
 - After initial assessment and after the cord stops pulsating.
 - Leave a minimum of 6 inches of cord.
- Allow spontaneous delivery of placenta:
 - Do not pull on umbilical cord.
 - Do not delay transport waiting for delivery.
 - Massage abdominal wall overlying uterine fundus.
 - If placenta delivers, package for hospital staff.
- For transport:
 - Ensure newborn remains warm
 - Turn heat to maximum in ambulance compartment
 - Consider commercial warming device (do not put heat packs directly on skin)
 - When possible, transport newborn in child safety seat.

PARAMEDIC STANDING ORDERS
- Active seizures—see Seizures Protocol 2.17A.
- After delivery:
 - Oxytocin 10 Units IM.
 - Note: In multiple pregnancy, do not give until all placentas are delivered.

APGAR Scale

<table>
<thead>
<tr>
<th>Feature</th>
<th>2 Points</th>
<th>1 Point</th>
<th>0 Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity (Muscle Tone)</td>
<td>Active Movement</td>
<td>Arms and legs flexed (Weak, some movement)</td>
<td>Limp or flaccid</td>
</tr>
<tr>
<td>Pulse</td>
<td>Over 100 bpm</td>
<td>Below 100 bpm</td>
<td>Absent</td>
</tr>
<tr>
<td>Grimace (Irritability/)</td>
<td>Cry, sneeze, cough, active movement</td>
<td>Grimace (some flexion of extremities)</td>
<td>No reflexes</td>
</tr>
<tr>
<td>Appearance (Skin Color)</td>
<td>Completely pink</td>
<td>Body pink, Extremities blue</td>
<td>Blue, pale</td>
</tr>
<tr>
<td>Respiration</td>
<td>Vigorous cry, Full breaths</td>
<td>Slow, irregular, or gasping breaths, weak cry</td>
<td>Absent</td>
</tr>
</tbody>
</table>

PEARLS:
- **OB Assessment:**
 - Length of pregnancy
 - Number of pregnancies
 - Number of viable births
 - Last menstrual period
 - Due date
 - Prenatal care
 - Number of expected babies
 - Drug use
 - Newborn infants are prone to hypothermia which may lead to hypoglycemia, hypoxia and lethargy. Aggressive warming techniques should be initiated including drying, swaddling, and warm blankets covering body and head.
 - Raise temperature in ambulance patient compartment.
- **Consider Medical Control for:**
 - Prepartum hemorrhage
 - Postpartum hemorrhage
 - Breech presentation
 - Limb presentation
 - Nuchal cord
 - Prolapsed cord
- **Signs of imminent delivery:**
 - Urge to move bowels
 - Urge to push
 - Crowning
 - Contractions less than 2 minutes apart

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Hyperglycemia is defined as blood glucose greater than or equal to 250 mg/dL with associated signs and symptoms. Early signs include: Increased thirst, headaches, trouble concentrating, frequent urination and fatigue.

EMT STANDING ORDERS – ADULT & PEDIATRIC
- Routine Patient Care.
- Obtain glucose reading.
- For nausea/vomiting see Nausea/Vomiting Protocol 2.11.

ADVANCED EMT/PARAMEDIC STANDING ORDERS – ADULT & PEDIATRIC
- ADULT: Administer 500ml bolus of 0.9% NaCl, then 250ml/hr.
- PEDIATRIC: Administer 10 mL/kg bolus of 0.9% NaCl.
 - May repeat fluid bolus two times for a total of 3 fluid boluses, not to exceed adult volume.

EMT/ADVANCED EMT/PARAMEDIC EXTENDED CARE ORDERS
- Oral fluids: if the patient is not vomiting, provide oral hydration with water.
 - Patient must be alert enough to swallow and protect airway.

PEARLS:
- Diabetic Ketoacidosis (DKA) is a life threatening emergency defined as uncontrolled hyperglycemia with the signs and symptoms of ketoacidosis.
- Signs and symptoms of DKA include uncontrolled blood glucose greater than or equal to 250 mg/dL, weakness, altered mental status, abdominal pain, nausea, vomiting, polyuria (excessive urination), polydipsia (excessive thirst), a fruity odor on the breath (from ketones), and tachypnea (Kussmaul respirations).
- Common causes of DKA include infection, acute coronary syndrome, and medication non-compliance.
- Hyperglycemic Hyperosmolar Nonketotic Syndrome (HHNS) is characterized by blood glucose levels greater than 600 mg/dL and profound dehydration without significant ketoacidosis. Most patients present with severe dehydration and focal or global neurologic deficits e.g. coma, altered mental status.
- Hyperglycemia may be detrimental to patients at risk for cerebral ischemia such as victims of stroke, cardiac arrest, and head trauma.
2.8 Hyperthermia – Adult & Pediatric

Indications:
Elevated temperature due to environmental exposure, over exertion, pharmacological agents or excited/agitated delirium.

Contraindications:
Fever associated with likely infectious illness.

EMT Standing Orders - Adult & Pediatric
- Routine Patient Care.
- Move victim to a cool area and shield from the sun or any external heat source.
- Remove as much clothing as is practical and loosen any restrictive garments.
- If alert and oriented, give small sips of cool liquids.
- Monitor and record vital signs and level of consciousness.
- Obtain temperature – rectal temperature preferred as appropriate.
- If temperature is 40°C (>104°F) or if altered mental status is present, begin active cooling by:
 - Continually misting the exposed skin with tepid water while fanning the patient (most effective).
 - Truncal ice packs and wet towels/sheets may be used, but are less effective than evaporation.
 - Discontinue active cooling when the patient reaches 38.5°C (101.5°F), or if shivering occurs and cannot be managed by paramedics (see below).

Advanced EMT Standing Orders – Adult & Pediatric
- ADULT: Consider 500 ml 0.9% NaCl IV fluid bolus for dehydration even if vital signs are normal.
- PEDIATRIC: Consider 10 – 20 ml/kg 0.9% NaCl IV fluid bolus for dehydration even if vital signs are normal.

Paramedic Standing Orders - Adult
- If uncontrolled shivering occurs during cooling:
 - *Midazolam 2.5 mg IV/IN, may repeat once in 5 minutes or; 5 mg IM may repeat once in 10 minutes OR
 - Lorazepam 1 mg IV, may repeat once in 5 minutes or; 2 mg IM, may repeat once in 10 minutes OR
 - Diazepam 2 mg IV, may repeat once in 5 minutes

Paramedic Standing Orders - Pediatric
- If uncontrolled shivering occurs during cooling:
 - *Midazolam 0.05 mg/kg IV/IM or 0.1 mg/kg IN (maximum dose 3 mg); may repeat once in 5 minutes, OR
 - Lorazepam 0.05 mg/kg IV/IM (maximum dose 1 mg); may repeat once in 5 minutes, OR
 - Diazepam 0.1 mg/kg IV (maximum dose 5 mg); may repeat once in 5 minutes.

*For IN administration of midazolam use a 5 mg/mL concentration.

Pearls:
- Exertional hyperthermic patients may be significantly dehydrated, and may require repeat fluid boluses.
- Immersion cooling is the most effective method to lower core body temperature if proper resources are available.
Routine Patient Care.
- Obtain glucose reading.
- Oral glucose: administer commercially prepared glucose gel or equivalent.
 - Hypoglycemic patients must be alert enough to swallow and protect airway.
- For patients with an insulin pump who are hypoglycemic with associated altered mental status (GCS<15):
 - Stop the pump or remove catheter at insertion site if patient cannot ingest oral glucose or ALS is not available.
 - Leave the pump connected and running if able to ingest oral glucose or receive ALS interventions.

Administer dextrose 10% IV via premixed infusion bag (preferred) or prefilled syringe until mental status returns to baseline and glucose level is greater than 60 mg/dL. IV pump not required.
- If unable to establish IV access, administer glucagon 1 mg IM.
 - Recheck glucose 15 minutes after administration of glucagon.
 - May repeat glucagon 1mg IM if glucose level is <70 mg/dl with continued altered mental status.

Intraosseous (IO) administration of dextrose should be reserved for hypoglycemic patients with severe altered mental status or active seizures and IV access cannot be obtained.

PEARLS:
- There are no statistically significant differences in the median recovery time to a GCS score of 15 following administration of D10% versus D50%. D10% may benefit patients by decreasing the likelihood of post-treatment hyperglycemia and reducing the likelihood of extravasation injury.
- Causes of hypoglycemia include medication misuse or overdose, missed meal, infection, cardiovascular insults (e.g., myocardial infarction, arrhythmia), or changes in activity (e.g., exercise).
- Sulfonylureas (e.g., glyburide, glipizide) have long half-lives ranging from 12 - 60 hours. Patients with corrected hypoglycemia who are taking these agents are at particular risk for recurrent symptoms and frequently require hospital admission.
- Oral glucose equivalents include 3 - 4 glucose tablets, 4 oz. fruit juice (e.g. orange juice), non-diet soda, 1 tablespoon of pure NH maple syrup, sugar, or honey.
- Encourage patients who refuse transport after improvement of GCS and are back to baseline to consume complex carbohydrates (15 grams) and protein (12 – 15 grams) such as peanut butter toast, mixed nuts, milk or cheese to stabilize blood sugar.
- Hypoglycemia may be detrimental to patients at risk for cerebral ischemia, such as victims of stroke, cardiac arrest, and head trauma.
Hypoglycemic emergency is defined as glucose <60 mg/dl with associated altered mental status, GCS <15.

EMT STANDING ORDERS

- Routine Patient Care.
- Obtain glucose reading.
- Oral glucose: administer commercially prepared glucose gel or equivalent.
 - Hypoglycemic patients must be alert enough to swallow and protect airway.
- For patients with an insulin pump who are hypoglycemic with associated altered mental status (GCS<15):
 - Stop the pump or disconnect catheter at insertion site if patient cannot ingest oral glucose or ALS is not available.
 - Leave the pump connected and running if able to ingest oral glucose or receive ALS interventions.

ADVANCED EMT/PARAMEDIC STANDING ORDERS

- Administer 5 mL/kg dextrose 10% IV via premixed infusion bag (preferred) or prefilled syringe per Pediatric Color Coded Appendix 3, may repeat every 5 minutes until mental status returns to baseline and glucose level is greater than 60 mg/dL. IV pump not required.
- If unable to obtain IV access:
 - Patients < 20 kg, give glucagon 0.5 mg IM.
 - Patients > 20 kg, give glucagon 1 mg IM.

Intraosseous (IO) administration of dextrose should be reserved for hypoglycemic patients with severe altered mental status or active seizures and IV access cannot be obtained.

PEARLS:

- Hypoglycemic emergency in pediatrics is defined as glucose <60 mg/dl with associated altered mental status, GCS <15.
- There are no statistically significant differences in the median recovery time to a GCS score of 15 following administration of D10% versus D50%. D10% may benefit patients by decreasing the likelihood of post-treatment hyperglycemia and reducing the likelihood of extravasation injury.
- Causes of hypoglycemia include medication misuse or overdose, missed meal, infection, cardiovascular insults (e.g., myocardial infarction, arrhythmia), or changes in activity (e.g., exercise).
- Sulfonylureas (e.g., glyburide, glipizide) have long half-lives ranging from 12-60 hours. Patients with corrected hypoglycemia who are taking these agents are at particular risk for recurrent symptoms and frequently require hospital admission.
- Oral glucose equivalents include 3-4 glucose tablets, 4 oz. fruit juice (e.g. orange juice), non-diet soda, 1 tablespoon of pure NH maple syrup, sugar, or honey.
- Encourage patients who refuse transport after improvement in GCS and are back to baseline to consume complex carbohydrates (15 grams) and protein (12 – 15 grams) such as peanut butter toast, mixed nuts, milk or cheese to stabilize blood sugar.
- Hypoglycemia may be detrimental to patients at risk for cerebral ischemia, such as victims of stroke, cardiac arrest, and head trauma.
Routine Patient Care.
- Avoid rough movement and excess activity.
- Prevent further heat loss:
 - Insulate from the ground and shield from wind/water.
 - Move to a warm environment.
 - Gently remove any wet clothing and dry patient.
 - Cover with warm blankets including the head and neck.
 - Consider use of heat reflective emergency blanket.
- If unresponsive, obtain esophageal or rectal temperature, if feasible.
- Obtain blood glucose.
- Maintain horizontal position.
- Apply truncal warm packs.
- Consider covering the patient’s mouth and nose with a surgical mask to prevent respiratory heat loss.
- A minimum of 45 – 60 second assessment of respirations and pulse is necessary to confirm respiratory arrest or cardiac arrest.
- If pulse and breathing are present, continue rewarming techniques.
- If pulse and breathing are absent, start CPR see Cardiac Arrest Protocols 3.2.

Warm IV 0.9% NaCl 38°C - 42°C (101.4°F – 107.6°F) should be used.
- If pulse and breathing are absent and esophageal or rectal temperature is <32°C (89.6°F):
 - Continue CPR.
 - Give IV medications based on dysrhythmia (consider increasing the dosing time to allow drugs to circulate).
 - Defibrillation as indicated.

Patients with severe frost bite injury may benefit from urgent treatment with IV TPA at a burn center.
- Most digital thermometers will not read below 35°C (95°F).
- Hypothermic patients are often significantly dehydrated, and may require repeat fluid boluses.
- Transportation with continuing CPR may be justified if hypothermia is present or suspected.
- Patients with Stage III or IV hypothermia may benefit from treatment at a facility capable of ExtraCorporeal Membrane Oxygenation (ECMO) or CardioPulmonary Bypass (CPB).
Routine Patient Care
- For nausea allow patient to inhale vapor from isopropyl alcohol wipe 3 times every 15 minutes as tolerated.

Pearls
- To reduce incidence of dystonic reactions, administer prochlorperazine and metoclopramide slowly over 1-2 minutes.
- Use prochlorperazine with caution in women of child bearing ages.

EMT Standing Orders - Adult & Pediatric

Considerations
- **Routine Patient Care**

Advanced EMT Standing Orders - Adult
- **Consider 500 ml IV fluid bolus for dehydration even if vital signs are normal.**
 - May repeat 250 ml IV bolus if transport exceeds 15 minutes and patient’s condition has not improved.
- **Ondansetron 4 mg by mouth (PO).**

Paramedic Standing Orders - Adult
- **Ondansetron 4 mg IV/PO/IM OR**
- **Prochlorperazine 5 – 10 mg IV, or 5 mg IM, OR**
- **Metoclopramide 5 mg IV OR**
 - May repeat any of the above medications once after 10 minutes if nausea/vomiting persists.
- **Granisetron 0.1 – 1 mg IV over 5 minutes (one-time dose) OR**
- **Dolasetron 12.5 mg IV (one-time dose).**

Antidote
- For dystonic reactions caused by EMS administration of prochlorperazine or metoclopramide:
 - Administer diphenhydramine 25 – 50 mg IV/IM.

Paramedic Standing Orders - Pediatric
- **Consider 10 – 20ml/kg IV fluid bolus for dehydration even if vital signs are normal.**
- **Ondansetron 0.1 mg/kg IV(maximum single dose 4mg), OR**
- **Ondansetron PO 4 mg OR**
- **Granisetron 10 micrograms/kg IV over 5 minutes (one-time dose).**

Advanced EMT/Paramedic Extended Care Orders
- **For motion sickness: administer diphenhydramine:**
 - Adult: 25 mg by mouth
 - Ages 2 – 5 years: 6.25 mg by mouth
 - Ages 6 – 11 years: 12.5 - 25 mg by mouth
- **May repeat IM prochlorperazine or metoclopramide every 4 - 6 hours as needed. (Paramedic only).**
Routine Patient Care.
- Assess for SLUDGEM [Salivation, Lacrimation, Urination, Defecation, Gastric upset, Emesis, Muscle twitching/miosis (constricted pupils) and KILLER Bs (Bradycardia, Bronchorrhea, Bronchospasm)].
- Remove to cold zone after decontamination and monitor for symptoms.
- Antidotal therapy should be started as soon as symptoms appear.
- All antidote auto-injections must be administered IM.

Determine dosing according to the following symptom assessment and guidelines.
- If multiple patients consider activation of local CHEMPACK, per regional plan.

<table>
<thead>
<tr>
<th>Tag Color</th>
<th>Signs & Symptoms of SLUDGEM</th>
<th>Autoinjector Dose and Monitoring Interval</th>
<th>Maintenance Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>Apnea, Convulsions, Unconsciousness, Flaccid paralysis</td>
<td>3 DuoDotes AND 1 diazepam (10 mg) auto-injector</td>
<td>1 DuoDote every hour for 3 hours</td>
</tr>
<tr>
<td>YELLOW</td>
<td>Dyspnea, Twitching, Nausea, vomiting, Sweating, anxiety, Confusion, Constricted pupils, Restlessness, weakness</td>
<td>1 DuoDote AND Monitor every 10 minutes</td>
<td></td>
</tr>
<tr>
<td>GREEN</td>
<td>Asymptomatic, None</td>
<td>Monitor every 10 – 15 minutes for evidence of exposure.</td>
<td></td>
</tr>
</tbody>
</table>

PARAMEDIC STANDING ORDERS
- If field conditions permit, initiate cardiac monitoring and consider the administration of IV medications.
- If symptoms persist after the administration of 3 DuoDote kits:
 - Atropine 2 mg IV; repeat every 5 minutes until secretions clear.
 - Pralidoxime:
 - 1 – 2 grams in 50 - 250 mL of 0.9% NaCl, over 15 – 30 minutes (pump not required), may repeat within 1 hour if muscle weakness and fasciculations are not relieved. Additional doses may be needed every 3 – 8 hours, if signs of poisoning recur.
 - Diazepam 5 mg IV every 5 minutes; or 10 mg IM or diazepam auto-injector (10mg) every 10 minutes, as needed.

Instead of diazepam, may use either:
- Lorazepam 1 mg IV; may repeat once in 5 minutes, or 2 mg IM, may repeat once in 10 minutes, OR
- *Midazolam 2.5 mg IV/IN every 5 minutes; or 5 mg IM every 10 minutes as needed.*

PARAMEDIC MEDICAL CONTROL – MAY CONSIDER:
- Pralidoxime maintenance infusion:
 - Pralidoxime: Initial dose 1 – 2 gram followed by a continuous infusion at 500 mg/hr.

For IN administration of midazolam use a 5 mg/mL concentration.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Nerve Agents Organophosphate Poisoning – Pediatric

EMT/ADVANCED EMT STANDING ORDERS

- Routine Patient Care.
- Assess for SLUDGEM [Salivation, Lacrimation, Urination, Defecation, Gastric upset, Emesis, Muscle twitching/miosis (constricted pupils) and KILLER Bs (Bradycardia, Bronchorrhea, Bronchospasm)].
- Remove to cold zone after decontamination and monitor for symptoms.
- Antidotal therapy should be started as soon as symptoms appear.
- All antidote auto-injections must be administered IM.

Determine dosing according to the following symptom assessment and guidelines.
- If multiple patients consider activation of local CHEMPACK, per regional plan.

PARAMEDIC STANDING ORDERS

- In the unlikely event that field conditions permit, follow weight-based dosing and treatment guidelines:
 - Initiate cardiac monitoring.
 - Establish IV access.
 - Atropine 0.05 – 0.1 mg/kg IV or IM (minimum dose of 0.1 mg, maximum single dose 5 mg); repeat every 2 – 5 minutes as needed.
 - Pralidoxime:
 - Infuse 15 mg/kg in 50 - 250 mL of 0.9% NaCl, over 30 minutes (pump not required) may repeat within 1 hour if muscle weakness and fasciculations are not relieved. Additional doses may be needed every 3 – 8 hours, if signs of poisoning recur as needed,
 - Diazepam 0.3 mg/kg IV (0.5 mg/kg per rectum) (maximum dose 10 mg), repeat every 5 – 10 minutes as needed.

 Instead of diazepam, may use either:
 - Lorazepam 0.1 mg/kg IV/IM (maximum dose 4 mg), repeat every 5 – 10 minutes as needed, OR
 - *Midazolam 0.2 mg/kg IM/IN/IV, repeat every 5 – 10 minutes as needed.

PARAMEDIC MEDICAL CONTROL – MAY CONSIDER:

Pralidoxime maintenance infusion:
- Initial does of 20 – 40 mg/kg, to a maximum dose of 1gm, followed by continuous infusion at 10 – 20 mg/kg/hr.

*For IN administration of midazolam use a 5 mg/mL concentration.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
EMT/ADVANCED EMT STANDING ORDERS

- Routine Patient Care—initial steps identified in Childbirth & Newborn Care Protocol 2.6.
- For premature infants, consider additional warming techniques, including wrapping the baby in food or medical-grade plastic wrap, silver swaddler/space blanket (preferred).
- If the mouth or nose is obstructed or heavy secretions are present, suction oropharynx then nares using a bulb syringe or mechanical suction using the lowest pressure that effectively removes the secretions, not to exceed 100 mm Hg.
- If ventilations are inadequate, or if the heart rate is less than 100, initiate positive pressure (bag-valve-mask) ventilations at 40 – 60 breaths per minute.
 - Note: resuscitation should be initiated with room air.
 - Inflation pressures should be individualized to achieve an increase in heart rate or movement of the chest with each breath. Be aware that bag-valve-mask pop-off valves may deliver inconsistent results.
- After 30 seconds of ventilations, assess heart rate:
 - Auscultate apical beat with a stethoscope or palpate the pulse by lightly grasping the base of the umbilical cord.
- For heart rate <100, reassess ventilatory technique and continue ventilations.
- For heart rate <60 after attempts to correct ventilations:
 - Initiate CPR at a 3:1 ratio (for a rate of 90 compression/minute and 30 ventilations/minute). Minimize interruptions. Reassess every 60 seconds; if not improving, continue CPR with 100% oxygen until recovery of a normal heart rate, then resume room air.
 - When newborn is stabilized see Childbirth & Newborn Care Protocol 2.6.

PARAMEDIC STANDING ORDERS

- If meconium is present and the newborn is not vigorous (poor muscle tone, weak respiratory effort, or heart rate <100 bpm), perform direct endotracheal suctioning via meconium aspirator.
- If bag valve mask ventilation is inadequate or chest compressions are indicated, consider intubating the baby using a 3.0 mm or 4.0 mm endotracheal tube. (For an infant born before 28 weeks gestation, a 2.5mm endotracheal tube should be used.)
 - Heart rate and EtCO₂ are the best indicators of whether the tube is properly placed in the trachea.
- Establish IV/IO. Obtain blood sample if possible.
 - If hypovolemia is suspected, administer 10 ml/kg bolus over 5 – 10 minutes.
 - If the heart rate fails to improve with chest compressions, administer epinephrine (0.1 mg/mL concentration) 0.01 – 0.03 mg/kg IV (0.1 – 0.3 ml/kg).
 - IV is preferred route for epinephrine—if there is a delay in establishing access, may administer via ETT 0.05 to 0.1 mg/kg (0.1 mg/mL concentration).
 - If glucose level is <60 mg/dl:
 - Administer dextrose per Pediatric Color Coded Appendix A3.

PEARLS:

- ALS NOTES: Flush all meds with 0.5 to 1.0 ml 0.9% NaCl and follow all ETT meds with positive-pressure ventilation.
2.14 Obstetrical Emergencies

Recognition:
- 3rd trimester bleeding: vaginal bleeding occurring ≥ 28 weeks of gestation.
- Preterm labor: onset of labor/contractions prior to the 37th week of gestation.
- Malpresentation: presentation of the fetal buttocks or limbs.
- Prolapsed umbilical cord: umbilical cord precedes the fetus.
- Shoulder dystocia: failure of the fetal shoulder to deliver shortly after delivery of the head.
- Postpartum hemorrhage: >500 ml estimated blood loss or blood loss with hemodynamic instability.
- Pre-eclampsia/Eclampsia: BP > 160/100, severe headache, visual disturbances edema, RUQ pain, seizures

EMR & EMT STANDING ORDERS
- Routine Patient Care
- Do not delay transport for patients with obstetrical emergencies, provide early notification to the receiving facility.
- If gestational age is known to be < 20 weeks, transport to closest hospital.
- If gestational age is known to be > 20 weeks or fundus is palpable at or above the umbilicus, contact Medical Control and follow local OB diversion protocol, if available.

For shoulder dystocia:
- Suspect if newborn's head delivers normally and then retracts back into perineum because shoulders are trapped.
- Discourage pushing by the mother
- Support the baby's head, do not pull on it.
- Suction the nasopharynx and oropharynx, as needed
- Position mother with buttocks dropped off end of stretcher and thighs flexed upward (Extreme knee-chest position/McRobert's maneuver). Apply firm pressure with an open hand immediately above pubic symphysis.
- If the above method is unsuccessful, consider rolling the patient to the all fours position.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
EMR & EMT STANDING ORDERS

<table>
<thead>
<tr>
<th>E</th>
<th>For postpartum hemorrhage:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Vigorously massage fundus until uterus is firm.</td>
</tr>
<tr>
<td></td>
<td>• If possible initiate breast feeding</td>
</tr>
<tr>
<td></td>
<td>• If blood loss is > 500 mL or patient is hemodynamically unstable, treat according to Shock Protocol 2.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>For cardiac arrest in the pregnant patient (regardless of etiology)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• See Cardiac Arrest Protocol 3.2A</td>
</tr>
<tr>
<td></td>
<td>• For patient ≥ 20 week gestation or if the fundus is palpable at or above the level of the umbilicus, apply left lateral uterine displacement (LUD) with the patient in the supine position to decrease aortocaval compression. LUD should be maintained during CPR. If ROSC is achieved, the patient should be placed in the left lateral decubitus position.</td>
</tr>
</tbody>
</table>

ADVANCED EMT STANDING ORDERS

<table>
<thead>
<tr>
<th>A</th>
<th>Establish IV access above the diaphragm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For preterm labor:</td>
</tr>
<tr>
<td></td>
<td>o 20 mL/kg 0.9% NaCl, may repeat once</td>
</tr>
</tbody>
</table>

PARAMEDIC STANDING ORDERS

<table>
<thead>
<tr>
<th>P</th>
<th>After delivery:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o Oxytocin 10 Units IM.</td>
</tr>
<tr>
<td></td>
<td>o Note: In multiple pregnancy, do not give until all placentas are delivered.</td>
</tr>
</tbody>
</table>

PEARL:
The amount of bleeding is difficult to estimate. Menstrual pad holds between 5 - 15 mL depending on type of pad. Maternity pad holds 100 mL when completely saturated. Chux pad holds 500 mL. Estimate the amount of bleeding by number of saturated pads in last 6 hours. Consider transporting the soiled linen to the hospital to help estimate blood loss.

PRE-ECLAMPSIA / ECLAMPSIA
Pre-eclampsia/Eclampsia is most commonly seen in the last 10 weeks of gestation, during labor, or up to 48 hours post-partum. It also may occur up to several weeks post-partum.

EMT/ADVANCED EMT STANDING ORDERS

<table>
<thead>
<tr>
<th>E</th>
<th>Routine Patient Care.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ensure quiet environment / dim lights / limited use of siren.</td>
</tr>
<tr>
<td></td>
<td>If pregnant, place patient in left lateral recumbent position.</td>
</tr>
</tbody>
</table>

ADVANCED EMT STANDING ORDERS

| A | Establish vascular access. |

PARAMEDIC STANDING ORDERS

<table>
<thead>
<tr>
<th>P</th>
<th>For patients in the third trimester of pregnancy or post-partum who are seizing or who are post-ictal:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Magnesium sulfate, 4 grams IV (mix in 100 mL 0.9% NaCl) bolus over 10 minutes, then consider 1 gram/hr continuous infusion see Seizure Protocol 2.17A.</td>
</tr>
<tr>
<td></td>
<td>• Contact Medical Control and follow local OB Diversion Protocol.</td>
</tr>
</tbody>
</table>
Nitronox: The patient must be able to self-administer this medication.
- Nitronox is contraindicated in patients with abdominal pain, pneumothorax, head-injured, or diving-emergency patients.
- Note: Nitronox may only be used if patient has not received an opiate or ketamine.

For mild or moderate pain consider:
- Ketorolac 15 mg IV/IM (no repeat)
 - Consider as first line in renal colic.

For severe pain or pain refractory to above, consider one of the following opiates:
- Fentanyl:
 - 25 – 100 micrograms IV, every 2 – 5 minutes to a total of 300 micrograms titrated to pain relief;
 - 50 – 100 micrograms IM/IN, every 5 minutes to a total of 300 micrograms titrated to pain relief, OR
- Hydromorphone
 - 0.5 – 1 mg IV, every 10 minutes to a total of 4 mg titrated to pain relief and if systolic BP is >100 mmHg, OR
- Morphine:
 - 2 – 10 mg IV/IM every 10 minutes to a total of 20 mg titrated to pain relief and if systolic BP is >100 mmHg.

Antidote: For hypoventilation from opiate administration by EMS personnel, assist ventilations and administer naloxone as directed in the Poisoning/Substance Abuse/Overdose Protocol 2.16A.

AND/OR
- Ketamine:
 - 10 – 20 mg IV diluted in 50 – 100 mL 0.9% NaCl or D5W over 10 minutes (no IV pump needed) may repeat every 5 minutes to a total of 40 mg, as tolerated, OR
 - 25 – 50 mg IM may repeat every 30 minutes, as tolerated
 - To minimize chance of dysphoric reaction consider starting at lower doses and increasing if needed for analgesia.

Antidote: For dysphoria (emergence reaction) caused by ketamine administer midazolam 1 - 2 mg IV/IM every 5 minutes as needed.

For nausea: see Nausea/Vomiting 2.11 Protocol.
Contact Medical Control for guidance in patients with:
- Altered mental status or
- Additional doses of a medication, or
- Benzodiazepines administration in conjunction with narcotic administration for patients with musculoskeletal spasms.
PEARLS:

- Avoid acetaminophen in patients who have taken medications containing acetaminophen within the past 4 hours.
- Avoid ketorolac in patients with NSAID allergy, aspirin-sensitive asthma, renal insufficiency, pregnancy, or known peptic ulcer disease.
- Medications should be administered cautiously in frail, debilitated, or patients over 65 years of age; lower doses should be considered.
- Use caution for altered mental status, hypoventilation, hypotension, or allergy.
- A scavenger and ventilation fan should be used while administering Nitronox.

- Ketamine should be considered in patients with severe pain, hemodynamic compromise, pain refractory to opiates, patients on chronic opiate treatment, and patients with history of substance use disorder and receiving medication assisted treatment (e.g. methadone, buprenorphine).
- Ketamine may cause appearance of intoxication at higher doses. Dysphoria (emergence reaction) may occur as the medication effects wear off.
- Place the patient in a position of comfort, if possible.
- Give reassurance, psychological support, and distraction.
- Avoid coaching the patient; simply ask them to rate his/her pain on a scale from 0 – 10, where 0 is no pain at all and 10 is the worst pain they have ever experienced.
- Reassess the patient’s pain level and vital signs every 5 minutes.
- Narcotics are not recommended for first line treatment of headache and should be reserved for severe headaches only.

Ketamine contraindicated in patients unable to tolerate hyperdynamic states such as those with known or suspected aortic dissection, myocardial infarction, and aortic aneurysm.
EMT STANDING ORDERS
- Routine Patient Care.
- Use ample padding when splinting musculoskeletal injuries.
- Consider the application of a cold pack for 30 minutes.
- Rate the patient’s pain:
 - Children greater than 8 years of age:
 - Ask the patient to rate pain on a scale from 0 – 10, where 0 is no pain and 10 is the worst pain ever experienced by the patient.
 - Children 3 – 8 years of age:
 - Use the Wong-Bakers FACES Scale see Pain Management - Pediatric Protocol 2.15P Page 2.
 - Children less than 3 years of age or non-verbal:
 - Use the r-FLACC Pain Scale, see Pain Management - Pediatric Protocol 2.15P Page 2.
- Unless the patient has altered mental status consider one of the following for pain control:
 - Fentanyl 1.0 micrograms/kg IV/IM/IN (maximum dose 100 micrograms) may repeat 0.5 micrograms/kg (Maximum dose 50 micrograms) every 5 minutes. May be repeated to a total of 3 doses, OR
 - Morphine 0.1 mg/kg IV (maximum dose 5 mg) may repeat 0.05 mg/kg (maximum dose 2.5 mg) every 5 minutes. May be repeated to a total of 3 doses.
 - Antidote: For hypoventilation from opiate administration by EMS personnel, assist ventilations and administer as directed in the Poisoning/Substance Abuse/Overdose Protocol 2.16P.

AND/OR
- Ketamine for patient > 3 months:
 - 0.5 – 1 mg/kg IN OR
 - 0.1 – 0.25 mg/kg IV diluted in 50 – 100 mL 0.9% NaCl or D5W over 10 minutes (no IV pump needed)
 - To minimize chance of dysphoric reaction consider starting at lower doses and increasing if needed for analgesia.
 - Antidote: For dysphoria (emergency reaction) caused by ketamine administer midazolam 0.05 mg/kg IV/IM (max single dose of 2 mg) every 5 minutes as needed.
 - For nausea: See Nausea/Vomiting Protocol
 - Contact Medical Control for guidance regarding:
 - Altered mental status or
 - Requests to provide additional doses of a medication.

ADVANCED EMT STANDING ORDERS
- Nitronox: Patient must be able to self-administer this medication. Nitronox is contraindicated in patients with abdominal pain, pneumothorax, head injury, or diving-emergency patients.
 - Note: Nitronox may only be used if the patient has not received an opiate or ketamine.

PARAMEDIC STANDING ORDERS
Unless the patient has altered mental status consider one of the following for pain control:
- Nitronox: Patient must be able to self-administer this medication. Nitronox is contraindicated in patients with abdominal pain, pneumothorax, head injury, or diving-emergency patients.
 - Note: Nitronox may only be used if the patient has not received an opiate or ketamine.
- Ketamine contraindicated in patients unable to tolerate hyperdynamic states such as those with known or suspected aortic dissection, myocardial infarction, and aortic aneurysm.
PEARLS:

- Ketamine should be considered in patients with severe pain, hemodynamic compromise, pain refractory to opiates, patients on chronic opiate treatment, and patients with history of substance use disorder and receiving medication assisted treatment (e.g. methadone, buprenorphine).
- Ketamine dosing is based on IDEAL body weight or Pediatric Color Coded Appendix.
- Ketamine may cause appearance of intoxication at higher doses. Dysphoria may occur as the medication effects wear off.
- Avoid coaching the patient; simply ask him/her to rate his/her pain on a scale from 0 – 10, where 0 is no pain at all and 10 is the worst pain the patient has ever experienced. Place the patient in a position of comfort, if possible.
- Give reassurance, psychological support, and distraction.
- Reassess the patient’s pain level and vital signs every 5 minutes.

Wong-Baker FACES™ Pain Rating Scale

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Hurt</td>
</tr>
<tr>
<td>2</td>
<td>Hurts Little Bit</td>
</tr>
<tr>
<td>4</td>
<td>Hurts Little More</td>
</tr>
<tr>
<td>6</td>
<td>Hurts Even More</td>
</tr>
<tr>
<td>8</td>
<td>Hurts Whole Lot</td>
</tr>
<tr>
<td>10</td>
<td>Hurts Worst</td>
</tr>
</tbody>
</table>

Faces Legs Activity Cry Consolability Revised Scale (FLACC-R)

<table>
<thead>
<tr>
<th>Categories</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>No particular expression or smile</td>
<td>Occasional grimace or frown, withdrawn, disinterested, sad, appears worried</td>
<td>Frequent to constant quivering chin, clenching jaw, distressed looking face, expression of fright/panic</td>
</tr>
<tr>
<td>Legs</td>
<td>Normal position or relaxed, usual tone & motion to limbs</td>
<td>Uneasy, restless, tense, occasional tremors</td>
<td>Kicking, or legs drawn up, marked increase in spasticity, constant tremors, jerking</td>
</tr>
<tr>
<td>Activity</td>
<td>Lying quietly, normal position, moves easily, regular, rhythmic respirations</td>
<td>Squirming, shifting back and forth, tense, tense/guarded movements, mildly agitated, shallow/splinting respirations, intermittent sighs</td>
<td>Arched, rigid or jerking, severe agitation, head banging, shivering, breath holding, gasping, severe splinting</td>
</tr>
<tr>
<td>Cry</td>
<td>No cry (awake or asleep)</td>
<td>Moans or whimper, occasional complaint, occasional verbal outbursts, constant grunting</td>
<td>Crying steadily, screams or sobs, frequent complaints, repeated outbursts, constant grunting</td>
</tr>
<tr>
<td>Consolability</td>
<td>Content, relaxed</td>
<td>Reassured by occasional touching, hugging or being talked to, distractible</td>
<td>Difficult to console or comfort, pushing caregiver away, resisting care or comfort measures</td>
</tr>
</tbody>
</table>

Each of the five categories (F) Face; (L) Legs; (A) Activity; (C) Cry; (C) Consolability is scored from 0-2, which results in a total score between zero and ten.

Patients who are awake: Observe for at least 1-2 minutes. Observe legs and body uncovered. Reposition patient or observe activity, assess body for tenseness and tone. Initiate consoling interventions if needed.

Patients who are asleep: Observe for at least 2 minutes or longer. Observe body and legs uncovered. If possible reposition the patient. Touch the body and assess for tenseness and tone.

The revised-FLACC can be used for all non-verbal children. The additional descriptors (in bold) are descriptors validated in children with cognitive impairment. The nurse can review with parents the descriptors within each category. Ask them if there are additional behaviors that are better indicators of pain in their child. Add these behaviors to the tool in the appropriate category.

© 2002, The Regents of the University of Michigan. All Rights Reserved 09-09-2009

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Routine Patient Care
- Prior to calling Poison Control attempt to identify substance, quantity, time/route of exposure and patient information (weight, medications, history, intentional, accidental).
- Contact Poison Control at (800) 222-1222 as soon as practical.

Ingested Poison
- Consider activated charcoal 25 – 50 grams by mouth if advised by Poison Control or Medical Control.
- For suspected opiate overdose with severe respiratory depression consider:
 - Naloxone 1 mg (1 mL) per nostril (IN) via prefilled syringe and atomizer for a total of 2 mg OR
 - Naloxone 4 mg (0.5 mL) commercially prepared nasal spray
 - If no response repeat in 3 - 5 minutes.
 - For additional doses call Medical Control.

NOTE: Must complete First Responder Narcan Rollout before using naloxone, see: http://nhoodle.nh.gov/ola/

- For suspected isolated cyanide poisoning, see Smoke Inhalation Protocol 2.20A.
- For decontamination/hazardous materials exposure, see Hazardous Materials 9.0.
- For hypoglycemia, see Hypoglycemia Emergencies Protocol 2.9A.
- For seizures, see Seizure Protocol 2.17A.

Ingested Poison
- For suspected opiate overdose with severe respiratory depression consider:
 - Naloxone 0.4 – 2.0 mg IV/IM
 - If no response, may repeat every 3 - 5 minutes to a total of 10 mg.

Suggested Treatments
- Beta Blocker and Calcium Channel Blocker refer to Bradycardia Protocol 3.1A.
- Dystonic Reaction:
 - Diphenhydramine 25 – 50 mg IV/IM
- Organophosphates, see Nerve Agent/Organophosphate Protocol 2.12A.
- Suspected Sympathomimetic/Stimulant:
 - *Midazolam 2.5 mg IV/IN, may repeat once in 5 minutes; or 5 mg IM, may repeat once in 20 minutes, OR
 - Lorazepam 1 mg IV, may repeat once in 5 minutes; or 2 mg IM may repeat once in 20 minutes, OR
 - Diazepam 2 mg IV, may repeat once in 5 minutes; or 5 mg IM, may repeat once in 20 minutes,
- Tricyclic with symptomatic dysrhythmias, (e.g., tachycardia and wide QRS > 100 milliseconds):
 - Sodium bicarbonate 2 mEq/kg IV.

For IN administration of midazolam use a 5 mg/mL concentration.

This protocol is designed to provide general guidelines for treatment. Specific treatments or antidotes may be appropriate as directed by on-line medical control or in consultation with Poison Control.

PEARLS:
- If possible, bring container/bottles and/or contents.
- Pulse oximetry may NOT be accurate for toxic inhalational patients.
- Capnography may be helpful for monitoring respiratory status and titrating to lowest effective naloxone dose. See Capnography Procedure 6.1.
Signs & Symptoms, which may or may not be present:

- **Acetaminophen**: initially no sign/symptoms or nausea/vomiting. If not detected and treated, may cause irreversible liver failure.

- **Akathisia**: May consist of feelings of anxiety, agitation, and jitteriness, as well as inability to sit still / pacing. This may be induced by antipsychotics, such as haloperidol, or anti-emetics such as prochlorperazine or metoclopramide.

- **Anticholinergic**: tachycardia, fever, dilated pupils, mental status changes. Blind as a bat (blurred vision). Dry as a bone (dry mouth). Red as a beet (flushing). Mad as a hatter (confusion). Hot as a hare (hyperthermia).

- **Aspirin**: abdominal pain, vomiting, tachypnea, fever and/or altered mental status. Renal dysfunction, liver failure, and/or cerebral edema among other things can take place later.

- **Cardiac Medications**: dysrhythmias, altered mental status, hypotension, hypoglycemia.

- **Depressants**: bradycardia, hypotension, decreased temperature, decreased respirations, non-specific pupils.

- **Dystonic Reaction**: Neurological movement disorder, in which sustained muscle contractions cause twisting and repetitive movements or abnormal postures. This may be induced by antipsychotics, such as haloperidol, or anti-emetics such as prochlorperazine or metoclopramide.

- **Opiate**: Respiratory depression or arrest, pinpoint pupils, decreased mental states. Prolonged overdoses may result in compartment syndrome and/or hypothermia.

- **Organophosphates**: bradycardia, increased secretions, nausea, vomiting, diarrhea, pinpoint pupils.

- **Solvents**: nausea, coughing, vomiting, mental status change and arrhythmias. Patient with significant solvent exposure, must be handled gently to reduce the incident of arrhythmia and/or subsequent cardiac arrest.

- **Sympathomimetic/Stimulants**: tachycardia, hypertension, seizures, agitation, increased temperature, dilated pupils, anxiety, paranoia, diaphoresis. Examples are bath salts, cocaine, methamphetamine, ecstasy, ADHD drugs, thyroid meds (rarely), salbutamol.

- **Tricyclic**: seizures, dysrhythms, hypotension, decreased mental status or coma.
Routine Patient Care.

Prior to calling Poison Control attempt to identify substance, quantity, time/route of exposure and patient information (weight, medications, history, intentional, accidental).

Contact Poison Control at (800) 222-1222 as soon as practical.

For suspected opioid overdose with severe respiratory depression, administer via atomizer:
- **Infant & Toddler:** Naloxone 0.5 mg (0.5 mL) per nostril for a total of 1 mg.
- **Small Child and larger:** Naloxone 1 mg (1 mL) per nostril for a total of 2 mg.

Ingested Poison:
- Consider activated charcoal per length-based resuscitation tape if advised by Poison Control or Medical Control.

For suspected isolated cyanide poisoning, see Smoke Inhalation Protocol 2.20P.

For decontamination/hazardous materials exposure: refer to Hazardous Materials 9.0.

For hypoglycemia, see Hypoglycemia Emergencies 2.9P.

For seizures, see Seizures Protocol 2.17P.

This protocol is designed to provide general guidelines for treatment. Specific treatments or antidotes may be appropriate as directed by on-line medical control or in consultation with Poison Control.

PEARLS:
- If possible, bring container/bottles, and/or contents.
- Pulse oximetry may NOT be accurate for toxic inhalational patients.
- Capnography may be helpful for monitoring respiratory status and titrating to lowest effective naloxone dose. See Capnography Procedure 6.1.
Signs & Symptoms, which may or may not be present:

- **Acetaminophen**: initially no signs/symptoms or nausea/vomiting. If not detected and treated, may cause irreversible liver failure.
- **Akathisia**: May consist of feelings of anxiety, agitation, and jitteriness, as well as inability to sit still / pacing. This may be induced by antipsychotics, such as haloperidol, or anti-emetics such as prochlorperazine or metoclopramide.
- **Anticholinergic**: tachycardia, fever, dilated pupils, mental status changes. Blind as a bat (blurred vision). Dry as a bone (dry mouth). Red as a beet (flushing). Mad as a hatter (confusion). Hot as a hare (hyperthermia).
- **Aspirin**: abdominal pain, vomiting, tachypnea, fever and/or altered mental status. Renal dysfunction, liver failure, and or cerebral edema among other things can take place later.
- **Cardiac Medications**: dysrhythmias, altered mental status, hypotension, hypoglycemia.
- **Depressants**: bradycardia, hypotension, decreased temperature, decreased respirations, non-specific pupils.
- **Dystonic Reaction**: Neurological movement disorder, in which sustained muscle contractions cause twisting and repetitive movements or abnormal postures. This may be induced by antipsychotics, such as haloperidol, or anti-emetics such as prochlorperazine or metoclopramide.
- **Opiate**: Respiratory depression or arrest, pinpoint pupils, decreased mental states. Prolonged overdoses may result in compartment syndrome and/or hypothermia.
- **Organophosphates**: bradycardia, increased secretions, nausea, vomiting, diarrhea, pinpoint pupils.
- **Solvents**: nausea, coughing, vomiting, mental status change and arrhythmias. Patient with significant solvent exposure, must be handled gently to reduce the incident of arrhythmia and/or subsequent cardiac arrest.
- **Sympathomimetic/Stimulants**: tachycardia, hypertension, seizures, agitation, increased temperature, dilated pupils, anxiety, paranoia, diaphoresis. Examples are bath salts, cocaine, methamphetamine, ecstasy, ADHD drugs, thyroid meds (rarely), salbutamol.
- **Tricyclic**: seizures, dysrhythmias, hypotension, decreased mental status or coma.
Seizures – Adult 2.17A

EMT/ADVANCED EMT STANDING ORDERS

- Routine Patient Care.
- If the blood glucose reading is <60 mg/dL, see Hypoglycemia Protocol 2.9A.
- If midazolam intranasal or diazepam rectal gel (Diastat) has been prescribed by the patient’s physician, assist the patient or care giver with the administration in accordance with the physician’s instructions.
- If the patient has an implanted vagus nerve stimulator (VNS), suggest that family use the VNS magnet to activate the VNS and assist if required.
 - The VNS magnet should “hover” (moving randomly like a bee around a hive) over the implanted disc for a slow count of three seconds; if unsuccessful, repeat every 3 – 5 minutes for a total of 3 times.
 - Note: do not delay medication administration.

PARAMEDIC STANDING ORDERS

While seizure activity is present, consider:

- *Midazolam 10 mg IM (preferred route) every 10 minutes or 5 – 10 mg IV/IN every 5 minutes, OR
- Lorazepam 2 – 4 mg IV every 5 minutes to a total of 8mg, OR
- Diazepam 5 – 10 mg IV (then 2.5 mg every 5 minutes to total of 20 mg).

For patients in the third trimester of pregnancy or post-partum who are seizing or who are post-ictal:

- Magnesium sulfate, 4 grams IV (mix in 100 mL 0.9% NaCl) bolus over 10 minutes, then consider 1 gram/hr continuous infusion.

For IN administration of midazolam use a 5 mg/mL concentration.

Do NOT routinely place an IV/IO for the actively seizing patient (unless needed for other reasons).

PEARLS:

- Do not attempt to restrain the patient; protect them from injury.
- History preceding a seizure is very important. Find out what precipitated the seizure (e.g., medication non-compliance, active infection, trauma, hypoglycemia, poisoning).
- **Status epilepticus** is defined as any generalized seizures lasting more than 5 minutes. This is a true emergency requiring rapid airway control, treatment (including benzodiazepines), and transport.
- IM/IN is the preferred route for midazolam where an IV has not been previously established.
- IM midazolam should be administered to the lateral thigh.
- Diazepam and lorazepam are not well absorbed IM and should be given IV.
- There is an increased risk of apnea with >2 doses of benzodiazepines.
Routine Patient Care.

If the blood glucose reading is <60 mg/dl, see Hypoglycemia Protocol 2.9P.

If midazolam intranasal or diazepam rectal gel (Diastat) has been prescribed by the patient’s physician, assist the patient or care giver with the administration in accordance with the physician’s instructions.

If the patient has an implanted vagus nerve stimulator (VNS), suggest that family use the VNS magnet to activate the VNS and assist if required.
 o The VNS magnet should “hover” (moving randomly like a bee around a hive) over the implanted disc for a slow count of three seconds; if unsuccessful, repeat every 3 – 5 minutes for a total of 3 times.
 o Note: do not delay medication administration.

While seizure activity is present, consider:
 o *Midazolam 5 mg/mL concentration (IM or IN preferred):
 ▪ 0.2 mg/kg IM/IN (single maximum dose 8mg) repeat every 5 minutes; or
 ▪ 0.1 mg/kg IV (single maximum dose 4 mg) repeat every 5 minutes, OR
 o Lorazepam 0.1 mg/kg IV (single maximum dose 4 mg) repeat every 5 minutes, OR
 o Diazepam 0.1 mg/kg IV (single maximum dose 10 mg IV) repeat every 5 minutes.

*For IN administration of midazolam use a 5 mg/mL concentration.

Do NOT routinely place an IV/IO for the actively seizing patient (unless needed for other reasons).

PEARLS:
- Do not attempt to restrain the patient; protect them from injury.
- History preceding a seizure is very important. Find out what precipitated the seizure (e.g., medication non-compliance, active infection, trauma, hypoglycemia, poisoning).
- Status epilepticus is defined as any generalized seizures lasting more than 5 minutes. This is a true emergency requiring rapid airway control, treatment (including benzodiazepines), and transport.
- IM/IN is the preferred route for midazolam where an IV has not been previously established.
- IM midazolam should be administered to the lateral thigh.
- Diazepam and lorazepam are not well absorbed IM and should be given IV.
- There is an increased risk of apnea with >2 doses of benzodiazepines.
2.18A Sepsis – Adult

IDENTIFICATION OF POSSIBLE SEPSIS
- Suspected infection – YES
- Evidence of sepsis criteria – YES (2 or more):
 - Temperature < 96.8 °F or > 101°F
 - Heart rate > 90 bpm
 - Respiratory rate > 20 bpm
 - Systolic blood pressure < 90 mmHg OR Mean Arterial Pressure (MAP) <65mmHg
 - New onset altered mental status OR increasing mental status change with previously altered mental status
 - Serum lactate level >2 mmol/L
 - ETCO₂ < 25 mmHg

EMT STANDING ORDERS - ADULT
- Routine Patient Care.
- Administer oxygen at a rate to keep oxygen saturation 94 - 99%.
- Do not delay transport.
- If positive sepsis screen, notify receiving facility of a “Sepsis Alert”.

ADVANCED EMT STANDING ORDERS - ADULT
- Rapidly administer 0.9% NaCl to maintain systolic blood pressure >90 mmHg OR MAP >65 mmHg in 500 mL boluses. Total volume should not exceed 4,000 ml.
- Patients should be reassessed frequently, with special attention given to the lung examination to ensure volume overload does not occur.

PARAMEDIC STANDING ORDERS - ADULT
- Obtain serum lactate level (if available and trained)
- If there is no adequate hemodynamic response after 2,000 ml IV fluid infused consider:
 - Norepinephrine infusion 1 – 30 microgram/minute (preferred) via pump, OR
 - Epinephrine infusion 2 – 10 micrograms/minute via pump.

PEARLS:
- Sepsis is a systemic inflammatory response due to infection, often resulting in significant morbidity and mortality.
- Septic shock has a 50% mortality rate and must be treated aggressively.
- Treatment consisting of IV fluid administration and early antibiotics reduces mortality in septic patients.
PEARLS:

- Sepsis is a systemic inflammatory response due to infection. Frequent causes of septic shock include urinary, respiratory, or gastrointestinal infections and complications from catheters and feeding tubes. Patients who are immuno-compromised are also susceptible to sepsis.
- Septic shock has a high mortality and is one of the leading causes of pediatric deaths.
- Aggressive IV fluid therapy and early antibiotics significantly reduces death.

IDENTIFICATION OF POSSIBLE SEPSIS:

- Suspected Infection – YES
- Temperature > 101°F or < 96.8
- Heart rate or respiratory rate greater than normal limit for age (heart rate may not be elevated in septic hypothermic patients) AND at least one of the following indications of altered organ function:
 - Altered mental status
 - Capillary refill time <1 second (flash) or > 3 seconds
 - Mottled cool extremities
 - Finger stick lactate level >2mmol/L
 - ETCO₂ < 25 mmHg

Note: Consider early consultation with Medical Control for suspected pediatric septic shock patients.

EMT STANDING ORDERS - PEDIATRIC

- Routine Patient Care.
- Monitor and maintain airway and breathing as these may change precipitously.
- Administer oxygen and continue regardless of oxygen saturation levels.
- Obtain blood glucose reading.
- Do not delay transport.

ADVANCED EMT STANDING ORDERS - PEDIATRIC

IV fluids should be titrated to attain normal capillary refill, peripheral pulses, and level of consciousness.

- Administer fluid bolus of 20 mL/kg of 0.9% saline by syringe push method; reassess patient immediately after completion of bolus and repeat 2 times (max 60 mL/kg), if inadequate response to boluses.

Note: Reassess patient between each bolus for improving clinical signs and signs of fluid overload (rales, increased work of breathing, or increased oxygen requirements).

PARAMEDIC STANDING ORDERS - PEDIATRIC

- Obtain finger stick lactate level (if available and trained).
- If there is no response after 3 fluid boluses, contact Medical Control to consider:
 - Additional fluids
 - Norepinephrine (preferred) 0.05 – 0.1 mcg/kg/min, titrated to effect to a maximum dose 2 mcg/kg/min, via pump, see appendix 4 OR
 - Epinephrine 0.1 – 1.0 mcg/kg/min, via pump, titrated to effect see appendix 4.
Non-Traumatic Shock
Adult & Pediatric

SHOCK

Inadequate tissue perfusion that impairs cellular metabolism

Recognize Compensated Shock - Adult:
- Anxiety
- Tachycardia
- Tachypnea
- Diaphoresis

Recognize Compensated Shock - Pediatric:
- Delayed capillary refill
- Decreased or bounding peripheral pulses
- Palpable central pulse, decreased distal pulse
- Cool extremities
- Altered mental status
- Mild tachypnea

Trauma Involved?

NON-TRAUMATIC SHOCK

Inadequate tissue perfusion that impairs cellular metabolism

Recognize Compensated Shock - Pediatric:
- Delayed capillary refill
- Decreased or bounding peripheral pulses
- Palpable central pulse, decreased distal pulse
- Cool extremities
- Altered mental status
- Mild tachypnea

EMT STANDING ORDERS - ADULT & PEDIATRIC:

- Obtain finger stick lactate level (if available and trained)
 - ETCO$_2$ < 25 mmHg OR lactate > 2 mmol/L may indicate poor perfusion/shock

ADVANCED EMT STANDING ORDERS – ADULT & PEDIATRIC

ADULT: Administer 0.9% NaCl in 250 mL boluses to return the patient to a coherent mental status or palpable radial pulse, not to exceed 2000 mL without consultation with Medical Control.

PEDIATRIC: Administer fluid bolus of 20 mL/kg of 0.9% NaCl by syringe push method (may repeat to a maximum 60 mL/kg) to improve clinical condition (capillary refill time ≤ 2 seconds, equal peripheral and distal pulses, improved mental status, normal breathing.

PARAMEDIC STANDING ORDERS – ADULT & PEDIATRIC

ADULT: If there is no adequate hemodynamic response after 2,000 mL IV fluid infused consider:
- Norepinephrine infusion 1 – 30 microgram/minute (preferred) via pump, OR
- Epinephrine infusion 2 – 10 micrograms/minute, via pump

PEDIATRIC: If there is no adequate hemodynamic response after 60 mL/kg IV fluid infused contact Medical Control

CARDIOGENIC SHOCK

- Norepinephrine infusion 1 – 30 microgram/minute (preferred) via pump, OR
- Epinephrine infusion 2 – 10 micrograms/minute, via pump

*For pediatric cardiogenic shock administer fluid bolus of 10mL/kg of 0.9% saline by syringe push method. Repeat bolus per Medical Control.

DISTRIBUTIVE SHOCK

Known history of AI or recent illness, see Adrenal Insufficiency Protocol 2.1

Systemic response to an allergen, see Anaphylaxis/Allergic Reaction Protocol 2.2A&P

Overwhelming response to an infection, see Sepsis Protocol 2.18 A&P

HYPOVOLEMIC SHOCK

Insufficient circulating volume.

OBSTRUCTIVE SHOCK

Obstruction of blood flow outside the heart

For cardiac tamponade, rapid transport, treat arrhythmias per Cardiac Protocols 3.0 – 3.6.

For pulmonary embolism: rapid transport and see Airway Management Protocol 5.0.

For abdominal pain with vaginal bleeding see Obstetric Protocol 2.14.

Nausea and vomiting see Nausea Vomiting Protocol 2.11.

For GI bleeding see Abdominal Pain Protocol 2.0.

Heat exposure, see Hyperthermia Protocol 2.8.

For cardiac tamponade, rapid transport, treat arrhythmias per Cardiac Protocols 3.0 – 3.6.

For pulmonary embolism: rapid transport and see Airway Management Protocol 5.0.
EMT STANDING ORDERS

- Routine Patient Care.
- Oxygen 100% via non-rebreather mask or BVM.
- Decontamination concurrent with initial resuscitation.
- If a carbon monoxide (CO) oximeter (e.g., Rad-57) is available, obtain carbon monoxide levels.
- If a measuring device is available, obtain atmospheric levels of carbon monoxide (CO) and cyanide (CN).

ADVANCED EMT/PARAMEDIC STANDING ORDERS

For a history of smoke exposure with an altered level of consciousness and/or hemodynamic or respiratory compromise, administer, if available:

- Hydroxocobalamin via use of Cyanokit:
 - Reconstitute: Place the vial of hydroxocobalamin in an upright position; add 0.9% NaCl to the vial (200 mL for 5 grams) vial using the transfer spike. Fill to the line.
 - Rock vial for at least 60 seconds (do not shake).
 - Depending on clinical response, a second dose may be required.

- Oxygen saturation may be inaccurate in patients exposed to carbon monoxide or cyanide.
- CO oximeter devices may yield inaccurate low/normal results for patients with CO poisoning. All patients with probable or suspected CO poisoning should be transported to the nearest appropriate hospital, based on their presenting signs and symptoms.
- Do not administer other drugs concurrently in same IV as hydroxocobalamin.

<table>
<thead>
<tr>
<th>Percent CO in Blood</th>
<th>Typical Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>None</td>
</tr>
<tr>
<td>10-20</td>
<td>Slight headache</td>
</tr>
<tr>
<td>21-30</td>
<td>Headache, slight increase in respirations, drowsiness</td>
</tr>
<tr>
<td>31-40</td>
<td>Headache, impaired judgment, shortness of breath, increasing drowsiness, blurring of vision</td>
</tr>
<tr>
<td>41-50</td>
<td>Pounding headache, confusion, marked shortness of breath, marked drowsiness, increasing blurred vision</td>
</tr>
<tr>
<td>>51</td>
<td>Unconsciousness, eventual death if victim is not removed from source of CO</td>
</tr>
</tbody>
</table>

Symptoms: headache, confusion, dyspnea, chest tightness, nausea.
Signs: soot in the nose or mouth, change in level of consciousness, seizure, dilated pupils, coughing, tachypnea and hypertension (early), bradypnea and hypotension (late), shock, vomiting.

PEARLS:
- Smoke is a dangerous mixture of toxic gases and suspended chemicals consequential to combustion. While it may be impossible to predict exactly what components of combustion are inhaled, cyanide (CN) and carbon monoxide (CO) are common elements found in smoke and should be suspected in all smoke inhalation victims.
Routine Patient Care.
- Oxygen 100% via non-rebreather mask or BVM.
- Decontamination concurrent with initial resuscitation.
- If a carbon monoxide (CO) oximeter (e.g., Rad-57) is available, obtain carbon monoxide levels.
- If a measuring device is available, obtain atmospheric levels of carbon monoxide (CO) and cyanide (CN).

PEARLS:
- Smoke is a dangerous mixture of toxic gases and suspended chemicals consequential to combustion. While it may be impossible to predict exactly what components of combustion are inhaled, cyanide (CN) and carbon monoxide (CO) are common elements found in smoke and should be suspected in all smoke inhalation victims.

EMT STANDING ORDERS
- Reconstitute: Place the vial of hydroxocobalamin in an upright position; add 0.9% NaCl to the vial (200 mL for 5 grams) vial using the transfer spike. Fill to the line.
- Rock vial for at least 60 seconds (do not shake).
 o Using vented intravenous tubing, infuse per Pediatric Color Coded Appendix 3 over 7.5 minutes for 100 mL vial set or 15 minutes for 200 mL vial set.
 o Depending on clinical response, a second dose may be required.

ADVANCED EMT/PARAMEDIC STANDING ORDERS
For a history of smoke exposure with an altered level of consciousness and/or hemodynamic or respiratory compromise, administer, if available:
- Hydroxocobalamin via use of Cyanokit:
 o Symptoms: headache, confusion, dyspnea, chest tightness, nausea.
 o Signs: soot in the nose or mouth, change in level of consciousness, seizure, dilated pupils, coughing, tachypnea and hypertension (early), bradypnea and hypotension (late), shock, vomiting.

Percent CO in Blood	Typical Symptoms
<10 | None
10-20 | Slight headache
21-30 | Headache, slight increase in respirations, drowsiness
31-40 | Headache, impaired judgment, shortness of breath, increasing drowsiness, blurring of vision
41-50 | Pounding headache, confusion, marked shortness of breath, marked drowsiness, increasing blurred vision
>51 | Unconsciousness, eventual death if victim is not removed from source of CO

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Northern New England Unified Guideline
Stroke – Adult

Prehospital Stroke Scale Examination

Facial Droop: *Have the patient smile and show teeth.*
- Normal: Both sides of the face move equally well.
- Abnormal: One side of the face does not move as well as the other.

Arm Drift: *Have the patient close their eyes and hold arms extended.*
- Normal: Both arms move the same, or both arms don’t move at all.
- Abnormal: One arm doesn’t move, or one arm drifts down compared to the other.

Speech: *Ask the patient to repeat a phrase such as, “You can’t teach an old dog new tricks.”*
- Normal: Patient says the correct words without slurring.
- Abnormal: Patient slurs words, says the wrong word, or is unable to speak.

Blood Glucose:

Stroke Alert Criteria – Please check Yes or No:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

EMT STANDING ORDERS

- Routine Patient Care.
- Establish Stroke Alert Criteria and notify receiving hospital of “Stroke Alert” if indicated.
- For symptomatic patients, even if > than 6 hours of onset:
 - Administer oxygen to maintain O_2 between 94% - 99%
 - Elevate head of stretcher to 30 ° (unless patient requires spinal motion restriction)
 - Minimize on-scene time. Do not delay for ALS intercept;
 - Acquire and transmit 12-lead ECG, if available;
 - Correct glucose if < 60 mg/dL. See Hypoglycemia Protocol – Adult 2.8A or Hypoglycemia Protocol – Pediatric 2.8P.
 - Rapid transport to the most appropriate facility based on regional transport agreements.

A/EMT & PARAMEDIC STANDING ORDERS

- Establish 18 guage IV (right AC preferred site) and administer 250 mL 0.9% NaCl bolus.

PEARLS:

- Consider transporting a witness, family member or caregiver with the patient to verify the time of the onset of stroke symptoms.
- For wake up stroke, check if patient had gotten up and been at baseline during the night.
- **Suspect stroke** in patients with any of the following new symptoms or complaints:
 - Acute visual disturbance
 - Altered mental state
 - Difficulty with balance or coordination
 - Difficulty with speech or understanding
 - Severe headache
 - Weakness/numbness left or right
 - Migraine
 - Seizure
 - Sepsis

Northern NE Protocol Group has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
This page left blank to insert your local Stroke agreement plan.
Routine Patient Care.
Maintain oxygen saturation 94 - 99%.
Attempt to determine the cause of syncope.
Perform cardiac monitoring; obtain 12-Lead EKG, if available. If acute coronary syndrome is suspected, refer to Acute Coronary Syndrome Protocol 3.0.
Obtain blood glucose analysis; refer to Hyperglycemia 2.7 A&P or Hypoglycemia 2.9 A&P Protocols, if indicated.
Assess for trauma either as the cause of the syncope or as a consequence of the syncopal event assess for trauma; refer to Spinal Injury Protocol 4.5 if indicated.
Consider ALS intercept.

PEARLS:
- Syncope is defined as a loss of consciousness accompanied by a loss of postural tone with spontaneous recovery.
- Consider all syncope to be of cardiac origin until proven otherwise.
- While often thought as benign, syncope can be the sign of more serious medical emergency.
- Syncope that occurs during exercise often indicates an ominous cardiac cause. Patients should be evaluated at the ED. Syncope that occurs following exercise is almost always vasovagal and benign.
- Prolonged QTc (generally >500ms) and Brugada Syndrome (incomplete RBBB pattern in V1/ V2 with ST segment elevation) should be considered in all patients.
- There is no evidence that supports acquiring orthostatic vital signs.
- Syncope can be indicative of many medical emergencies including:
 - Myocardial infarction
 - Pulmonary embolism
 - Cardiac arrhythmias,
 - Vaso-vagal reflexes
 - Diabetic emergencies
 - Poisoning/drug effects
 - Dehydration
 - Hypovolemia
 - Seizures
 - Ectopic pregnancy
3.0 Acute Coronary Syndrome - Adult

Not all patients with complaint of chest pain should automatically be treated with aspirin and nitrates. Consider the likelihood of ACS based on the nature of the symptoms, the patient’s age, cardiac risk factors, past medical history, etc.

EMT STANDING ORDERS - ADULT
- Routine Patient Care.
- Obtain 12-lead ECG with baseline vitals within 10 minutes if available and practical; and transmit per local guidelines.
 - If 12-lead ECG indicates a STEMI transport patient to the most appropriate facility in accordance with local STEMI guidelines/agreements. Notify receiving facility of a “STEMI Alert”.
- Administer oxygen only to patients with dyspnea, hypoxia (O_2 sat <94%), or signs of heart failure at a rate to keep O_2 saturation ≥ 94 - 99%.
- Administer aspirin 324 mg by mouth (chewable).
- Facilitate administration of the patient’s own nitroglycerin every 3 – 5 minutes while symptoms persist and systolic BP remains >100 mmHg, to a total of 3 doses.

ADVANCED EMT STANDING ORDERS - ADULT
- IV must be established before administration of nitroglycerin.
- Nitroglycerin 0.4 mg SL every 3 – 5 minutes while symptoms persist and if systolic BP remains >100 mmHg.

PARAMEDIC STANDING ORDERS - ADULT
- Consider IV nitroglycerin at 10 micrograms/minute if symptoms persist after 3rd SL nitroglycerin (it is recommended two (2) IV lines or a Twin Cath® in place and the IV nitroglycerin must be on an infusion pump).
- Increase IV nitroglycerin by 10 micrograms/minute every 5 minutes while symptoms persist and systolic BP remains >100 mmHg.
- If IV nitroglycerin is not available, consider the application of nitroglycerin paste 1 – 2 inches transdermally.
- Consider fentanyl 25 – 100 micrograms slow IV push every five minutes up to 300 micrograms and systolic BP remains >100 mmHg OR
- Consider morphine 2 – 5 mg IV/IM every 5 minutes to a maximum of 15 mg titrated to pain and systolic BP remains >100 mmHg.
- Treat dysrhythmias as needed; refer to the appropriate protocol.

PARAMEDIC MEDICAL CONTROL – MAY CONSIDER
- If STEMI without uncontrolled bleeding or known thrombocytopenia consider:
 - Heparin 60 unit/kg to a maximum of 4000 unit IV bolus.
PEARLS:

- Avoid nitroglycerin in any patient who has used a phosphodiesterase inhibitor such as: sildenafil (Viagra, Revatio), vardenafil (Levitra, Staxyn), tadalafil (Cialis, Adcirca) which are used for erectile dysfunction and pulmonary hypertension. Also avoid use in patients receiving intravenous epoprostenol (Flolan) which is used for pulmonary hypertension.
- Administer nitrates with extreme caution, if at all, to patients with inferior-wall STEMI or suspected right ventricular (RV) involvement because these patients require adequate RV preload.

Transmission of 12-lead ECG is critical to the activation of a STEMI system. Transmit any 12-lead ECG that states “Acute MI”, “Meets ST Elevation MI Criteria” or anything similar, or where the interpretation is unclear.

Early administration of aspirin has been shown to decrease mortality in Acute Coronary Syndrome.

Administer aspirin to every patient with suspected acute coronary syndrome unless they have:
 - History of anaphylaxis to aspirin, NSAIDs, or
 - Evidence of active gastrointestinal bleeding

Patients with acute coronary syndrome (especially women and the elderly) may present with signs and symptoms other than chest pain including shortness of breath, weakness, syncope and nausea.
This page left blank to insert your local STEMI agreement plan.
Bradycardia – Adult

EMT/ADVANCED EMT STANDING ORDERS
- Routine Patient Care.
- Consider the underlying causes of bradycardia (e.g., acute coronary syndrome, hyperkalemia, hypoxia, hypothermia).
- 12-lead ECG if available.

PARAMEDIC STANDING ORDERS

For symptomatic bradycardia:
If hemodynamically unstable:
- Consider atropine 0.5 mg IV every 3 – 5 minutes to a maximum of 3 mg.
- If atropine is ineffective:
 - Consider transcutaneous pacing.
 - Administer procedural sedation prior to or during transcutaneous pacing, if feasible:
 - *Midazolam 2.5 mg IV/IN, may repeat once in 5 minutes; or 5 mg IM, may repeat once in 10 minutes, OR
 - Lorazepam 1 mg IV, may repeat once in 5 minutes; or 2 mg IM, may repeat once in 10 minutes, OR
 - Diazepam 2 mg IV; may repeat once in 5 minutes.
- Epinephrine 2 - 10 micrograms/minute via pump, OR
- Norepinephrine 1 - 30 micrograms/minute via pump, OR
- Contact Medical Control for expert consultation.

Other Causes:
- For symptomatic beta blocker or calcium channel blocker overdose, consider glucagon 5 mg IV over 3 – 5 minutes.
- For suspected hyperkalemia with ECG changes or symptomatic calcium channel blocker overdose consider:
 - Calcium gluconate (10% solution) 2 grams IV over 5 minutes, with continuous cardiac monitoring, may repeat in 10 minutes if clinical indication persists OR
 - Calcium chloride (10% solution) 1 gram IV over 5 minutes, with continuous cardiac monitoring. May repeat in 10 minutes if clinical indication persists.

For IN administration of midazolam use a 5 mg/mL concentration.

For calcium chloride administration, ensure IV patency and do not exceed 1 mL per minute.

PEARLS:
- Hyperkalemia should be suspected in dialysis or renal failure patients with ECG changes such as tall peaked T waves, loss of P waves, QRS widening and bradycardia.
- When pushed too quickly, glucagon can cause nausea and vomiting.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified. 2017
Routine Patient Care.

Consider the underlying causes of bradycardia (e.g. hypoxia, hypoglycemia, hypovolemia, and hypothermia).

Begin/continue CPR if heart rate is <60 bpm with hypoperfusion despite adequate ventilation and oxygenation.

12-lead ECG if available.

EMT/ADVANCED EMT STANDING ORDERS

For symptomatic bradycardia:

If hemodynamically unstable:

- Epinephrine (0.1mg/mL) 0.01 mg/kg IV (0.1 ml/kg of 0.1mg/mL) every 3 – 5 minutes.
- Consider atropine 0.02 mg/kg IV for increased vagal tone or AV blocks, may repeat once (minimum single dose: 0.1 mg; maximum single dose 0.5 mg.)
- Consider transcutaneous pacing.
- Administer procedural sedation prior to/during pacing, if feasible:
 - *Midazolam 0.05 mg/kg IV/IM or 0.1 mg/kg IN (maximum dose 3 mg); may repeat once in 5 minutes, OR
 - Lorazepam 0.05 mg/kg IV/IM (maximum dose 1 mg); may repeat once in 5 minutes, OR
 - Diazepam 0.1 mg/kg IV (maximum dose 5 mg); may repeat once in 5 minutes

Other Causes:

- For hypoglycemia see Hypoglycemia 2.9P Protocols.
- For symptomatic beta blocker or calcium channel blocker overdose, consider glucagon 0.025 – 0.05 mg/kg.
- For suspected hyperkalemia with ECG changes or symptomatic calcium channel blocker overdose consider:
 - Calcium gluconate (10% solution) 100 mg/kg IV with a maximum 2 gm/dose over 5 minutes; may repeat in 10 minutes if clinical indication persists, OR
 - Calcium chloride (10% solution) 20 mg/kg IV (0.2 ml/kg) with a maximum 1 gm/dose over 5 minute; not to exceed 1 ml per minute. May repeat in 10 minutes if clinical indication persists.

*For IN administration of midazolam use a 5 mg/mL concentration.

For calcium chloride administration, ensure IV patency and do not exceed 1 mL per minute.

PEARLS:

- Combine age specific heart rates with signs of respiratory failure and shock while assessing.
- If child is asymptomatic, consider no treatment.
- When pushed too quickly, glucagon can cause nausea and vomiting.
Cardiac Arrest – Adult 3.2A

- Perform 2 minute cycles of uninterrupted chest compressions.
- Interrupt chest compressions only for rhythm/pulse check and defibrillation.
- Ventilation / Oxygenation options:
 - Apply high flow oxygen via non-rebreather mask (NRB) for passive insufflation OR
 - BVM ventilation 1 breath every 10 chest compressions without interrupting compressions.
 - For arrests of non-cardiac etiology, including respiratory and trauma, use BVM ventilation.

EMT STANDING ORDERS - ADULT

- Routine Patient Care—with focus on CPR
- Immediate chest compressions.
- Use AED as soon as possible, with minimal interruption of chest compressions.
- Continue 2 minute cycles of uninterrupted chest compressions followed by AED analysis and shock for 4 cycles (8 minutes).
- Place an oral or nasal airway.
- Ventilation / oxygenation options during 4 cycles (8 minutes):
 - Apply high flow oxygen via NRB, OR
 - BVM ventilation 1 breath every 10 chest compressions without interrupting compressions
 - Consider advanced airway only if airway patency cannot be maintained using basic maneuvers and adjuncts.
- If using a BVM, monitor capnography, if available, throughout resuscitation to assess CPR quality and to monitor for signs of Return of Spontaneous Circulation (ROSC).
- After 4 cycles (8 minutes):
 - Continue 2 minute cycles of uninterrupted chest compressions.
 - If passive insufflation was used, switch to BVM ventilation.
 - Consider placement of a supraglottic airway without interrupting chest compressions.
- Consider treatable causes: hypoxia, overdose/poisoning, hypothermia, hypoglycemia, and hypovolemia—treat as per specific protocol.
- If ROSC occurs see Post Resuscitative Care Protocol 3.4.
- Consider termination of efforts or not attempting resuscitation (see DNR, POLST & Advanced Directives Protocol 8.8 and/or Resuscitation Initiation & Termination Protocol 8.16

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Cardiac Arrest – Adult

ADVANCED EMT STANDING ORDERS - ADULT
- Place IV/IO without interrupting chest compressions.
- After the first 2 minute cycle, administer epinephrine (0.1 mg/mL concentration) 1 mg IV; repeat every other cycle.

PARAMEDIC STANDING ORDERS - ADULT
- Defibrillate as indicated, per manufacturer’s recommendations.
- After 4 cycles (8 minutes):
 - Consider endotracheal intubation without interrupting chest compressions.
 - Administer anti-dysrhythmic as indicated.
- For refractory ventricular fibrillation consider:
 - Changing pad placement from anterior-apex to anterior-posterior
 - If second manual defibrillator is available consider Double Sequential Defibrillation Procedure 6.2.
- Narrow complex PEA is often due to a mechanical cause including hemorrhage / hypovolemia, tension pneumothorax, massive MI and pulmonary embolism. Consider causes and treat appropriately including:
 - IV boluses for suspected hypovolemia
 - Needle decompression for suspected tension pneumothorax
- Wide complex PEA is often due to a metabolic cause including hyperkalemia and sodium-channel blocker toxicity. For wide complex PEA consider:
 - Calcium gluconate 2 grams IV, OR calcium chloride (10%) 1 gram IV AND
 - Sodium bicarbonate 2 mEq/kg IV
- For suspected pre-existing metabolic acidosis or suspected excited/ agitated delirium consider:
 - Sodium bicarbonate 2 mEq/kg IV

PEARLS:
- It is expected, unless special circumstances are present, resuscitation will be performed on scene until ROSC or termination of efforts. See Resuscitation Initiation and Termination 8.16
- Early CPR and early defibrillation are the most effective therapies for cardiac arrest care.
- Minimize interruptions in chest compressions, as pauses rapidly return the blood pressure to zero and stop perfusion to the heart and brain.
- Recognizing the goal of immediate uninterrupted chest compressions, consider delaying application of mechanical CPR devices until after the first four cycles (8 minutes). If applied during the first 4 cycles, the goal is to limit interruptions. Mechanical devices should only be used by services that are practiced and skilled at their application.
- Switch compressors at least every two minutes to minimize fatigue.
- Perform chest compressions while defibrillator is charging and resume compressions immediately after the shock is delivered.
EMT/ADVANCED EMT STANDING ORDERS

- Routine patient Care—with focus on CPR
- Immediate chest compressions.
- Apply AED and use as soon as possible (with minimum interruption of chest compressions). From birth to age 8 years use pediatric AED pads.
 - If pediatric AED pads are unavailable, providers may use adult AED pads, provided the pads do not overlap.
- Monitor capnography, if available, throughout resuscitation to assess and monitor airway placement, CPR quality and to monitor for signs of Return of Spontaneous Circulation.
- Consider termination of efforts or not attempting resuscitation, see DNR, POLST & Advanced Directives Policy 8.8 and/or Resuscitation Initiation & Termination 8.16.
- Consider treatable causes: hypoxia, overdose/poisoning, hypoglycemia, hypothermia, and hypovolemia (treat as per specific protocol).

PARAMEDIC STANDING ORDERS

- If Return of Spontaneous Circulation occurs see Post Resuscitative Care Protocol 3.4.
- If ventilation is adequate with BVM, routine placement of advanced airway can be deferred.
- Placement of an advanced airway during cardiac arrest should not interrupt chest compressions. In this setting, supraglottic airways and ETTs can be considered equivalent.
- For suspected metabolic acidosis, suspected or known hyperkalemia (dialysis patient), or known tricyclic antidepressant overdose, consider sodium bicarbonate 2 mEq/kg IV.

For Ventricular Fibrillation (VF)/Pulseless Ventricular Tachycardia (VT):

- Defibrillate at 2 J/kg; perform CPR for 2 minutes and recheck rhythm; if still a shockable rhythm, defibrillate at 4 J/kg; perform CPR for 2 minutes; reassess every 2 minutes and continue to defibrillate at 4J/kg.
- If no response after first defibrillation, administer:
 - Epinephrine (0.1 mg/mL concentration) 0.01 mg/kg (0.1 ml/kg) IV OR
 - Epinephrine (1 mg/mL concentration) 0.1 mg/kg (0.1 ml/kg) via ETT.
 - Repeat every 3 – 5 minutes.
- If no response after second defibrillation, consider:
 - Amiodarone 5 mg/kg (maximum 300 mg) IV, OR
 - Lidocaine 1 mg/kg (maximum 100 mg),
 - For Torsades de Pointes: magnesium sulfate 25 – 50 mg/kg (maximum 2 grams) IV over 1 – 2 minutes.

For Asystole or Pulseless Electrical Activity (PEA):

- Epinephrine (0.1 mg/mL concentration) 0.01 mg/kg (0.1 ml/kg) IV OR
- Epinephrine (1 mg/mL concentration) 0.1 mg/kg (1ml/kg) via ETT
 - Repeat every 3 – 5 minutes.
- Give 2 minutes of CPR, then check rhythm:
 - If asystole or PEA, continue epinephrine and 2 minutes of CPR until:
 - Pulse obtained, OR
 - Shockable rhythm obtained, OR
 - Decision made to discontinue further efforts.
3.3 Congestive Heart Failure
(Pulmonary Edema)

EMT STANDING ORDERS - ADULT

- Routine Patient Care.
- Place the patient in a semi-sitting or full sitting position.
- Facilitate administration of the patient’s own nitroglycerin every 5 minutes while symptoms persist and systolic BP is >140 mmHg.
- 12-lead ECG, if available.

ADVANCED EMT STANDING ORDERS - ADULT

- Consider Continuous Positive Airway Pressure (CPAP) with maximum 15 cmH₂O pressure support.
- Establish IV access.
- For patient’s with known history of congestive heart failure, consider:
 - For systolic BP of 140 - 160 mmHg: nitroglycerin 0.4 mg SL.
 - For systolic BP of 160 - 200 mmHg: nitroglycerin 0.8 mg SL (2 tabs/sprays).
 - For systolic BP > 200 mmHg: nitroglycerin 1.2 mg SL (3 tabs/sprays).
 - The above doses may be repeated every 5 minutes until symptomatic improvement or systolic BP of 140 mmHg.
- Assess blood pressure every 3 – 5 minutes during nitroglycerin administration.

PARAMEDIC STANDING ORDERS - ADULT

- Titrate until symptomatic improvement or systolic BP of 140 mmHg.
- For systolic BP of 140 - 160 mmHg: IV nitroglycerin start at 50 micrograms/minute.
- For systolic BP of 160 - 200 mmHg: IV nitroglycerin start at 100 micrograms/minute.
- For systolic BP > 200 mmHg: IV nitroglycerin start at 200 micrograms/minute.

Note: Two (2) IV lines are recommended when giving IV nitroglycerin; IV nitroglycerin must be administered using an infusion pump. Generally, accepted maximum dose: 400 micrograms/minute
- Consider nitroglycerin paste 1” – 2” transdermally (IV nitroglycerin preferred).

PEARLS:

- Avoid nitroglycerin in any patient who has used a phosphodiesterase inhibitor such as: sildenafil (Viagra, Revatio), vardenafil (Levitra, Staxyn), tadalafil (Cialis, Adcirca) which are used for erectile dysfunction and pulmonary hypertension. Also avoid use in patients receiving intravenous epoprostenol (Flolan) which is also used for pulmonary hypertension.
- Administer nitrates with extreme caution, if at all, to patients with inferior-wall STEMI or suspected right ventricular (RV) involvement because these patients require adequate RV preload.

- If patient has taken their own nitroglycerin without relief, consider loss of potency due to age.
- If Nitropaste is used, do not continue to use Nitroglycerin SL.
- Allow the patient to be in their position of comfort to maximize their breathing effort.
EMT/ADVANCED EMT STANDING ORDERS - ADULT

- If feasible, acquire and transmit a 12-lead EKG.
- Initial ventilation rate of 10 - 12 BPM, then titrate to capnography of 35 to 40 mm Hg, if available.
- Consider titrating oxygen lower for patients with SaO2 of 100%.

ADVANCED EMT STANDING ORDERS - ADULT

- Maintain systolic blood pressure of >90 mmHg OR MAP ≥ 65 mmHg.

For Post-resuscitation hypotension:
- Administer 0.9% NaCl in 250 – 500 ml boluses. Total volume should not exceed 2,000 ml.

PARAMEDIC STANDING ORDERS - ADULT

- Consider: (An infusion pump is required for the use of these pressor agents)
 - Norepinephrine infusion 1 – 30 micrograms/min, OR
 - Epinephrine infusion 2 – 10 micrograms/minute titrated to effect.
- Consider nasogastric or orogastric tube for the intubated patient.

PARAMEDIC STANDING ORDERS - PEDIATRIC

For Post-Resuscitation Hypotension:
- IV 0.9% NaCl 20 ml/kg (may repeat x1), AND/OR
- Consider: (An infusion pump is required for the use of these vasopressors)
 - Norepinephrine infusion 0.1 – 2 micrograms/kg/min (maximum dose 30 micrograms/min) titrated to effect, OR
 - Epinephrine 0.1 – 1 micrograms/kg/min (maximum dose 10 micrograms/minute) titrated to effect.

- For patients with return of spontaneous circulation after cardiac arrest not related to trauma or hemorrhage who are comatose without purposeful movement, consider transporting to a receiving facility capable of starting induced therapeutic hypothermia.
- If patient meets STEMI criteria transport per your STEMI guidelines/agreements. Notify receiving facility of a “STEMI Alert”.

PEARLS:
- Avoid hyperventilation as it increases intrathoracic pressures, potentially worsening hemodynamic instability.
EMT/ADVANCED EMT STANDING ORDERS

- Routine Care.
- 12-lead ECG if available.

PARAMEDIC STANDING ORDERS

Follow ACLS tachycardia guidelines as trained and credentialed.
For symptomatic tachyarrhythmias (other than sinus tachycardia):

If hemodynamically unstable:

- Synchronized cardioversion:
 - Use the following initial energy doses, then escalate to the next higher energy level if no conversion. Biphasic devices: follow manufacturer’s recommendations for dosing.
 - For narrow regular rhythm: 50 – 100J biphasic or 200J monophasic.
 - For narrow irregular rhythm: 120 – 200J biphasic or 200J monophasic.
 - For wide regular rhythm: 100J biphasic or monophasic.
 - For wide irregular/polymorphic VT: 120 – 200J biphasic or 360 monophasic, using unsynchronized defibrillation doses if unable to sync.
- Administer procedural sedation prior to or during cardioversion, if feasible:
 - *Midazolam 2.5 mg IV/IN, may repeat once in 5 minutes or; 5 mg IM may repeat once in 10 minutes, OR
 - Lorazepam 1 mg IV, may repeat once in 5 minutes or; 2 mg IM, may repeat once in 10 minutes, OR
 - Diazepam 2 mg IV, may repeat once in 5 minutes.

If hemodynamically stable:

For narrow complex tachycardia (with a heart rate persistently >150bpm):

- Attempt vagal maneuvers, for regular rhythms.
 - If vagal maneuvers fail and the rhythm is regular:
 - Adenosine 6 mg rapid IV.
 - May repeat at dose of 12 mg in 1 – 2 minutes if no conversion.
 - May repeat successful dose if rhythm recurs after conversion.
 - Diltiazem 0.25 mg/kg IV (maximum dose 20 mg) over 2 minutes.
 - May repeat dose in 15 minutes at 0.35 mg/kg (maximum dose 20 mg), if necessary.
 - Consider maintenance infusion at 5 – 15 mg/hour, OR
 - Metoprolol 5 mg IV over 2 – 5 minutes.
 - May repeat every five minutes to a maximum of 15 mg as needed to achieve a ventricular rate of 90 – 100.

- Diltiazem, metoprolol, amiodarone, and adenosine are contraindicated in patients with atrial fibrillation and a history of or suspected Wolff-Parkinson-White (WPW) syndrome.
- Medications should be administered cautiously in frail or debilitated patients; lower doses should be considered.

*For IN administration of midazolam use a 5 mg/mL concentration.

Protocol Continues
PEARLS:
- Consider and treat potential underlying causes, e.g., hypoxemia, dehydration, fever.
- Wide complex tachycardia should be considered Ventricular Tachycardia until proven otherwise.
- Signs and symptoms of hemodynamic instability:
 - Hypotension
 - Acutely altered mental status
 - Signs of shock
 - Signs of acute heart failure
 - Ischemic chest pain
- Adenosine should be administered rapidly though a proximal (e.g., antecubital) vein site followed by a rapid saline flush.

PARAMEDIC STANDING ORDERS - ADULT

For wide complex tachycardia:
- Only for regular rhythm with monomorphic QRS:
 - Consider: adenosine 6 mg rapid IV.
 - May repeat at dose of 12 mg after 1 – 2 minutes if no conversion.
 - May repeat successful dose if rhythm recurs after conversion.
 - Consider:
 - Amiodarone 150 mg IV mixed with 50 – 100 ml of 0.9% NaCl or D5W over 10 minutes.
 - May repeat once in 10 minutes.
 - If successful, consider a maintenance infusion of 1 mg/minute.
 - Lidocaine (considered second-line therapy) 1 – 1.5 mg/kg IV.
 - May repeat once in 5 minutes to maximum of 3 mg/kg.
 - If successful, consider a maintenance infusion of 1 – 4 mg/minute.

For polymorphic Ventricular Tachycardia/Torsades de Pointes:
- Consider magnesium sulfate 1 – 2 grams IV over 5 minutes.
EMT/ADVANCED EMT STANDING ORDERS

- Routine Patient Care.
- 12-lead ECG if available.

PARAMEDIC STANDING ORDERS

If hemodynamically unstable:

For narrow complex/probable SVT:
- Adenosine 0.1 mg/kg IV not to exceed 6 mg (first dose).
- Repeat once at 0.2 mg/kg IV not to exceed 12 mg (subsequent dose).
- If adenosine is ineffective or for wide complex, perform synchronized cardioversion:
 - 0.5 – 1 J/kg; if unsuccessful, increase to 2 J/kg.
- Administer procedural sedation prior to/during pacing, if feasible:
 - *Midazolam 0.05 mg/kg IV/IM or 0.1 mg/kg IN (maximum dose 3 mg); may repeat once in 5 minutes, OR*
 - Lorazepam 0.05 mg/kg IV/IM (maximum dose 1 mg); may repeat once in 5 minutes, OR
 - Diazepam 0.1 mg/kg IV (maximum dose 5 mg); may repeat once in 5 minutes

If hemodynamically stable:

For narrow complex, probable supraventricular tachycardia, or regular wide complex tachycardia (monomorphic QRS ONLY):
- Adenosine 0.1 mg/kg IV not to exceed 6 mg (first dose).
 - May repeat once at 0.2 mg/kg IV not to exceed 12 mg (subsequent dose).

For wide complex:
- Contact online Medical Control for consideration of amiodarone 5 mg/kg IV (maximum: 300 mg) over 20-60 minutes.

For IN administration of midazolam use a 5 mg/mL concentration.

PEARLS:
- Consider and treat potential underlying causes, e.g., hypoxemia, dehydration, fever.
- Signs and symptoms of hemodynamic instability:
 - Hypotension
 - Acutely altered mental status
 - Signs of shock
- Probable Sinus Tachycardia:
 - Compatible history consistent with known cause
 - P waves are present and normal
 - Variable R-R and constant P-R interval
 - Infants: rate usually <220/min
 - Children: rate usually <180/min
- Probable Supraventricular Tachycardia:
 - Compatible history (vague, nonspecific); history of abrupt onset / rate changes
 - P waves absent / abnormal
 - Heart-rate is NOT variable
 - Infants: rate usually >220/min
 - Children: rate usually >180/min
 - Adenosine should be administered rapidly though a proximal (e.g., antecubital) vein site followed by a rapid saline flush.
Team Focused CPR – Adult

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.

EMS agency should use a “pit crew” approach when using this protocol to ensure the most effective and efficient cardiac arrest care. Training should include teamwork simulations integrating BLS, and ALS crew members who regularly work together. EMS systems should practice teamwork using “pit crew” techniques with predefined roles and crew resource management principles. One Example is as follows:

POSITION #1 - Compressor 1 (right side of patient):
- Initiates 1 minute of chest compressions at rate of 100-120 / min
- Assists Position 3 with ventilations in off cycle

POSITION #2 - Compressor 2 (left side of patient):
- Sets up defibrillator
- Alternates 1 minute of chest compressions with Position 1
- Assists Position 3 with ventilations in off cycle

POSITION #3 - Airway (At patient’s head):
- Opens airway and inserts OPA
- Assembles NRB or BVM
- If using BVM, provide 2 handed mask seal
- Inserts advanced airway after 8 minutes/4 cycles.

POSITION #4 - Team Leader (Outside CPR triangle):
- Coaches the metrics
- Calls for compressor change every one minute
- Calls for rhythm analysis every 2 minutes, immediate shock if indicated
- Monitor CPR quality and use of metronome at 100-120 bpm
- Assumes duties of Position 5/6 if limited to four rescuers throughout resuscitation.

POSITION #5 - Vascular/Meds (Outside CPR triangle):
- Initiates IV/IO access
- Administers medications per protocol

POSITION #6 - Code Commander (Outside CPR triangle):
- Ideally highest level provider
- Communicates/interfaces with CPR Team Leader
- Coordinates patient treatment decisions
- Communicates with family/loved ones
- Completes Cardiac Arrest Check List
Cardiac Protocol 3.6

Team Focused
CPR – Adult

Policy Continued

- If feasible and the scene is safe, immediately upon arrival, one member of the crew should rapidly enter the scene without equipment (other than gloves) to begin chest compressions.
- Clear some space to optimize your working environment. Move furniture or get the patient in a position that will allow a rescuer space to kneel on both sides of them, and where there is sufficient room at the head. Effectiveness of chest compressions decrease during patient movement. Therefore resuscitate the patient as close to the scene as operationally feasible.
- Position 1 and 2 are ideally set up on opposite sides of patient’s chest and perform continuous chest compressions, alternating after minute to avoid fatigue.
- REMEMBER: Effective chest compressions are one of the most important therapies for the pulseless patient. Effective is defined as:
 - A rate of at least 100 and less than 120 compressions/minute - Use of metronome or CPR feedback device is essential. (e.g. built into monitor or smart phone app)
 - A depth of 2 - 2.4 inches
 - Allow for complete chest recoil (avoid leaning on chest)
 - Do not interrupt compressions to obtain IV access or perform airway management.
 - Do not hyperventilate as it increases intrathoracic pressure and decreases blood return to the heart. Ventilate 1 breath every 10 compressions without interrupting chest compressions.
- Chest compressions should only be interrupted during rhythm check (AED analysis or manual) and defibrillation shocks. Continue compressions when AED/ defibrillator is charging, if device allows.
- During interruptions compressor’s hands should hover over chest.
- Perform pulse check simultaneously with rhythm check.
- With the goal of immediate uninterrupted chest compressions, if a mechanical device is used, it should not lead to delay or interruption in chest compressions; consider delayed applications.
- Pre-charge manual defibrillators prior to rhythm check to ensure rapid defibrillation if a shockable rhythm is present. If no shock is indicated, disarm the device (dump the charge)
- Utilize ETCO\textsubscript{2} to assess CPR quality and monitor for signs of ROSC.
- Use of a CPR checklist to ensure that all best practices are followed during CPR.

Example Cardiac Arrest Check List

- Code commander and pit crew roles identified
- Chest compression interruptions minimized
- Compressors rotated at minimum every 2 minutes
- Metronome set between 100 and 120 beats per minute
- AED/defibrillator applied
- \text{O}_2 flowing and attached to NRB/BVM
- ETCO\textsubscript{2} waveform present
- IV/IO access established
- Possible causes considered
- Gastric insufflation limited and gastric decompression considered
- Family present and ongoing communication provided

Consider possible causes

- Hypovolemia
- Hypoxia
- Hydrogen Ions (acidosis)
- Hypothermia
- Hyper/hypokalemia
- Hypoglycemia
- Tablets/toxins
- Tamponade
- Tension pneumothorax
- Thrombosis (MI)
- Thrombosis (PE)
- Trauma

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
EMT STANDING ORDERS

- Routine Patient Care.
- Assess for evidence of smoke inhalation or burns; soot around mouth or nostrils, singed hair, carbonaceous sputum.
- If the patient has respiratory difficulty, altered level of consciousness and/or hemodynamic compromise, see Airway Management Protocols 5.1 and Smoke Inhalation Protocols 2.20.

Thermal

- Stop burning process with water or normal saline
- Remove non-adherent clothing and jewelry. Do not remove skin or tissue.
- To protect from infection, cover burns with clean dry sterile dressing or sheets.
- Keep patient warm and prevent hypothermia due to large thermal injuries.

Chemical

- Identify agent(s) and consider HAZMAT intervention, if indicated. See Hazardous Material Exposure Protocol 9.0
- Consider contacting Poison Control at 800-222-1222.
- Decontaminate the patient as appropriate.
 - Brush off dry powders if present, before washing.
 - Scrape viscous material off with rigid device, e.g., tongue depressor
 - Flush with copious amounts of clean water or sterile saline for 10 – 15 minutes, unless contraindicated by type of chemical agent (e.g., sodium, potassium or dry lime and/or phenols).

Electrical/Lightning

- Ensure your own safety; disconnect power source, if feasible.
- Place patient on a cardiac monitor.
- Consider spinal motion restriction for burns due to electric flow across the body.

Assess Extent of Burn

- Determine extent of the burn using Rules of Nine (see next page).
- Determine depth of injury.
- Do not include 1st degree burns in burn surface area (BSA) percentage.

Pain Control

- If a partial thickness burn, 2nd degree is < 10% body surface area:
 - Apply room-temperature water or room-temperature wet towels to burned area of a maximum of 15 minutes. Prolonged cooling may result in hypothermia.

ADVANCED EMT STANDING ORDER - ADULT

- Transport time less than 1 hour:
 - Administer warm 0.9% NaCl* at 500 mL/Hour.
- Transport time greater than 1 hour:
 - Administer warm 0.9% NaCl* at 1 – 2 mL/kg x % burn/8 = hourly rate x first 8 hours.

ADVANCED EMT STANDING ORDERS - PEDIATRIC

- Transport time less than 1 hour:
 - BSA > 20%: 20 mL/kg IV warm 0.9% NaCl*, over 10 – 30 minutes.(Does not need to be on a pump)
 - BSA < 20%: 10 mL/kg warm IV 0.9% NaCl*, over 10 – 30 minutes.
- Consult Medical Control:
 - Transport time greater than 1 hour and/or
 - Patient has signs of shock

* An IO device can be inserted through burned skin as long as the underlying bone has not been compromised.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Transport Decision:
- Consider air medical transport for major burns with greater than 20% BSA and/or inhalation injury with risk of airway compromise.

Rule of Nines

<table>
<thead>
<tr>
<th></th>
<th>Adult</th>
<th>Pediatric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head & Neck</td>
<td>9%</td>
<td>18%</td>
</tr>
<tr>
<td>Left arm</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Right arm</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Chest</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Abdomen</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Upper back</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Lower back</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Left leg</td>
<td>18%</td>
<td>13.5%</td>
</tr>
<tr>
<td>Right leg</td>
<td>18%</td>
<td>13.5%</td>
</tr>
<tr>
<td>Genital region</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

PEARLS:
- Electrocution/Lightning burns can occur anywhere along the path a current travels through the body. Evident surface burns may only comprise a small portion of the overall burn injury, and an injury’s full extent may not be immediately apparent.
- Chemical burns: If 0.9% NaCl or sterile water is not readily available, do not delay, use tap water for flushing the affected area. Flush the area as soon as possible with the cleanest readily available water using copious amounts of water.
Drowning/Submersion Injuries
Adult & Pediatric

SUBMERSION: When a patient goes under the water immediately, has a hypoxic cardiac arrest and then cools down. Prognosis considered dismal.

IMMERSION: Patients are in the water with head above water and they continue to breathe while they cool down before they eventually arrest. Prognosis can be good with patients surviving after prolonged CPR.

EMT STANDING ORDERS

- Routine Patient Care.
- Victims with only respiratory arrest usually respond after a few artificial breaths are given.
 - Give a few breaths and check for a pulse.
 - Anticipate vomiting.
- For patients in cardiac arrest, provide immediate CPR.
 - Utilize the sequence ABC, not CAB, i.e. start with airway and breathing before compressions.
- Routine stabilization of the cervical spine in the absence of circumstances that suggest a spinal injury is not recommended.
- Assess temperature, if unresponsive, obtain esophageal or rectal temperature.
- Due to extremely poor prognosis, providers may consider withholding or terminating resuscitation efforts when:
 - A clear history of prolonged submersion (without prior prolonged immersion), greater than 20 minutes (children may survive despite extended submersion) OR
 - Esophageal or rectal temperature is greater than 32°C (89.6°F) with asystole documented in 2 leads OR
 - Meets Termination of Resuscitation Criteria, see Resuscitation Initiation and Termination Protocol 8.16.
 - Consider hypothermia, see Hypothermia Protocol 2.10.
 - Do not delay urgent procedures such as airway management and IV access. Although hypothermic patients may exhibit cardiac irritability, do not delay necessary interventions.
- Conscious patients who survive any form of drowning are at risk of deterioration and should be transported to the hospital.

ADVANCED EMT/PARAMEDIC STANDING ORDERS

- Consider CPAP to supplement the patient’s own respiratory effort.
- For unconscious patients in distress, consider early intubation.
HYPOTHERMIA CHART

STAGE: I	Conscious, shivering
Core Temp	35 to 32°C
Treatment:	Warm environment and clothing, warm sweet drinks, and active movement (if possible)

STAGE: II	Impaired consciousness, not shivering
Core Temp	<32 to 28°C
Treatment:	Cardiac monitoring, minimal and cautious movements to avoid arrhythmias, horizontal position and immobilization, full-body insulation, active external and minimally invasive rewarming techniques (warm environment; chemical, electrical, or forced-air heating packs or blankets; warm parenteral fluids)

STAGE: III	Unconscious, not shivering, vital signs present
Core Temp	<28 to 24°C
Treatment:	Stage II management plus airway management as required; ECMO or CPB in cases with cardiac instability that is refractory to medical management

STAGE: IV	No vital signs
Core Temp	<24°C
Treatment:	Stage II and III management plus CPR and up to three doses of epinephrine (at an intravenous or intraosseous dose of 1 mg) and defibrillation, with further dosing guided by clinical response; rewarming with ECMO or CPB (if available) or CPR with active external and alternative internal rewarming

PEARLS
- Patients with Stage III or IV hypothermia may benefit from treatment at a facility capable of ExtraCorporeal Membrane Oxygenation (ECMO) or CardioPulmonary Bypass (CPB). Consider air medical transport.
- In hypothermic patients, low levels of ETCO2 may not be a useful predictor of outcome, due to reduced metabolism.
- Oral and tympanic thermometers do not yield an accurate core temperature for severely hypothermic patients.
- Cold water offers enhanced survival only where the patient becomes cold prior to cardiac arrest.
- There is no need to clear the airway of aspirated water; only a modest amount of water is aspirated by most drowning victims, and aspirated water is rapidly absorbed into the central circulation.
- Unnecessary cervical spine immobilization can impede adequate opening of the airway and delay delivery of rescue breaths.
EYE – EMT STANDING ORDERS

- Routine Patient Care.
- Obtain visual history (e.g., use of corrective lenses, surgeries, use of protective equipment).
- Obtain visual acuity, if possible.
- Assist patient with the removal of contact lens, if applicable.
- Chemical irritants, including pepper spray: flush with copious amounts of water, or 0.9% NaCl.
- Thermal burns to eyelids: patch both eyes with cool saline compress.
- Impaled object: immobilize object and patch both eyes.
- Puncture wound: place rigid protective device over both eyes (e.g., eye shield). Do not apply pressure.
- If the patient cannot close their eyelids, keep their eye moist with a sterile saline dressing.

EYE - ADVANCED EMT STANDING ORDER

- An anti-emetic is strongly recommended for penetrating or blunt eye trauma, consider Nausea Protocol 2.11.

EYE - PARAMEDIC STANDING ORDERS

- Proparacaine or tetracaine:
 - Apply 2 drops to affected eye; repeat every 5 minutes as needed.
 - Consider use of Morgan lens for irrigation.
 - Refer to Pain Management Protocol 2.15.

DENTAL AVULSION – EMT/ADVANCED EMT/PARAMEDIC STANDING ORDERS

- Routine Patient Care.
- Dental avulsions should be placed in an obviously labeled container with saline-soaked dressing, milk or hanks solution

EMT/ADVANCED EMT/PARAMEDIC EXTENDED CARE ORDERS

- If definitive treatment is expected to be greater than 4 hours, an attempt to reinsert the avulsed tooth in its socket should be considered, after rinsing tooth in water or normal saline. If multiple teeth require reinsertion, use the shape and size of dentition on the opposing side to guide you in proper placement.

PEARLS:

- Handle the tooth carefully. Avoid touching the root of the tooth (the part of the tooth that was embedded in the gum) because it can be damaged easily.
- Significant eye injury may be present despite normal vision and minimal symptoms.
- Any chemical or thermal burn to the face/eyes should raise suspicion of respiratory insult.
- Vomiting in connection with blunt or penetrating eye trauma significantly increases intraocular pressure and should be avoided.
Musculoskeletal Injuries
Adult & Pediatric

EMT STANDING ORDERS - ADULT & PEDIATRIC
- Routine Patient Care.
- Manually stabilize the injury.
- Control bleeding with pressure and/or tourniquet, see Tourniquet Procedure 6.7. Consider hemostatic dressing for severe hemorrhage.
- Remove obvious debris, irrigate open wounds with saline solution, and cover with moist sterile dressing.
- Assess CSMs distal to injury before and frequently after immobilization.
 - Splint extremity as required.
 - Traction splinting is preferred technique for isolated adult and pediatric mid-shaft femur fractures.
 - For pain relief apply ice and elevate.
- In a patient with a high risk mechanism of injury see Spinal Injury Protocol 4.5.
- Stabilize suspected pelvic fractures with commercial device (preferred) or bed sheet.

ADVANCED EMT AND PARAMEDIC STANDING ORDERS - ADULT
- Assess pain level and consider pain control measures, see Pain Management Protocol 2.15.
- Administer 0.9% NaCl per Shock – Traumatic Protocol 4.4. Total volume not to exceed 2000 mL without medical control consultation.

ADVANCED EMT AND PARAMEDIC STANDING ORDERS - PEDIATRIC
- Administer 0.9% NaCl per Shock – Traumatic Protocol 4.4.

EMT/ADVANCED EMT/PARAMEDIC STANDING ORDERS- ADULT & PEDIATRIC
- For impaled objects of the extremities, consider removal of the object unless removal will cause significant damage and/or uncontrolled hemorrhage.
- For dislocated patella, shoulder, or digits from indirect force:
 - Attempt to reduce if evacuation will be prolonged, dangerous, or painful.
 (Nationally recognized training required to perform these procedures)
- For open/compound fractures consider:
 - Ceftriaxone 1 grams IV/IM, if available. (Advanced EMT/Paramedic only)
- For musculoskeletal pain consider:
 - Adult: Ibuprofen 400 – 600 mg or acetaminophen 325 – 650 mg by mouth; repeat every 6 hours as needed, not to exceed 3000 mg in 24 hours.
 - Pediatric: Ibuprofen or acetaminophen per Pediatric Color Coded Appendix 3.

For dislocations due to direct impact, such as falls, the injury is more likely to be complicated by a fracture. Reducing these involves more risk. Splinting in place and urgent evacuation is ideal.

PEARLS:
- Use ample padding when splinting possible fractures, dislocations, sprains, and strains. Elevate injured extremities, if possible. Consider the application of a cold pack for 30 minutes.
- Musculoskeletal injuries can occur from blunt and penetrating trauma. Fractures of the humerus, pelvis and femur, as well as fractures or dislocations involving circulatory or neurological deficits, take priority over other musculoskeletal injuries.
- Hip dislocations, pelvic, knee, and elbow fracture / dislocations have a high incidence of vascular compromise.
- Lacerations should be evaluated for repair within 6 - 12 hours.
- Blood loss may be concealed or not apparent with extremity injuries.
PEARLS:
For adult patients with uncontrolled external hemorrhagic or penetrating torso injuries:
- Titrate IV fluids to clinical end points:
 1. Delaying aggressive fluid resuscitation until operative intervention may improve outcome.
 2. Several poor outcomes associated with IV fluid administration have been suggested, including dislodgement of clot formation, dilution of clotting factors, and acceleration of hemorrhage caused by elevated blood pressure.
- Patients should be reassessed frequently, with special attention given to the lung examination to ensure volume overload does not occur.

EMT & EMR STANDING ORDERS – ADULT & PEDIATRIC
- Routine Patient Care.
- Follow appropriate Trauma Protocols 4.0 – 4.8.
- Keep patient supine.
- Control active bleeding using direct pressure, pressure bandages, tourniquets (commercial preferred) see Tourniquet Procedure 6.7, or hemostatic bandage.
- Keep warm and prevent heat loss.
- Assess blood glucose.
- Do not delay transport; consider hospital destination per Trauma Triage and Transport Decision Protocol 8.18.

ADVANCED EMT STANDING ORDERS - ADULT
- Administer 0.9% NaCl in the form of small boluses (e.g., 250 mL) to return the patient to a coherent mental status or palpable radial pulse.
 - In the setting of traumatic brain injury, however, fluids should be titrated to maintain systolic blood pressure greater than 110 mm Hg.
 - Total volume should not exceed 2000 mL without consultation with Medical Control. Do not delay transport for IV access.

ADVANCED EMT STANDING ORDERS - PEDIATRIC
- Administer fluid bolus 20mL/kg of 0.9% NaCl by syringe method (may repeat to a maximum 60 mL/kg) to improve clinical condition (capillary refill time ≤ 2 seconds, equal peripheral and distal pulses, improved mental status, normal breathing).

PARAMEDIC STANDING ORDERS - ADULT
- Consider tranexamic acid see, Tranexamic Acid Protocol 4.8.
- Consider obtaining a finger stick lactate level (if available and trained)
- If tension pneumothorax is suspected, consider needle thoracostomy. See Thoracic Injury Protocol 4.6.
- If cardiac tamponade is suspected, rapid transport and treat arrhythmias per Cardiac Protocols 3.0 – 3.6.

Recognition of Compensated Shock – Adult
- Anxiety
- Tachycardia
- Tachypnea
- Diaphoresis

Hemorrhagic shock: Locations of blood loss include the chest, abdomen, pelvis, and multiple long bone fractures. Signs include pale, cool, clammy skin, tachycardia, and or hypotension.

Neurogenic shock: May occur after an injury to the spinal cord disrupts sympathetic outflow resulting in unopposed vagal tone. Signs include warm, dry skin, bradycardia, and/or hypotension.

Shock - Traumatic
Adult & Pediatric

SHOCK
Inadequate tissue perfusion that impairs cellular metabolism
The New Hampshire Medical Control Board has approved the following protocol. It supersedes Advanced Spinal Assessment Protocol 6.1. It represents a significant change in practice for EMS providers. It reflects our intention to ensure that EMS standards in New Hampshire remain consistent with the best emergency medicine standards. As with all protocol changes, services should promptly provide training for providers in the use of this protocol. Resources are available online at: http://nhoodle.nh.gov/ola/course/index.php?categoryid=13

EMT/ADVANCED EMT/PARAMEDIC STANDING ORDERS

PURPOSE: This protocol provides guidance regarding the assessment and care of patients who have a possible spinal injury.

Patients who have experienced a mechanism of spinal injury (esp. high risk mechanisms. See Red Flag Box.) require spinal motion restriction (as described further on) and protection of the injury site if they exhibit:

- Midline spinal pain or tenderness with palpation.
- Abnormal (i.e. not baseline) neurological function or motor strength in any extremity.
- Numbness or tingling (paresthesia).
- Sensation is not intact and symmetrical (or baseline for patient).
- Cervical flexion, extension and rotation elicits midline spinal pain.

OR

If they cannot competently participate in the assessment due to one of the following:

- Altered mental status (e.g., dementia, preexisting brain injury, developmental delay, psychosis).
- Alcohol or drug intoxication.
- Unable to participate in assessment (e.g., distracted by significant injuries to self or others.).
- Insurmountable communication barriers (e.g., deafness, or hard of hearing, language barrier).

Patients without any of the above findings should generally be transported without the use of a cervical collar or other means to restrict spinal motion. Utilize spinal motion restriction only where, in the professional judgment of the provider, the patient is at high risk for spinal injury as described above or with clear clinical indications of injury (e.g., midline spinal pain or deformity of the spine).

PEARLS:

- Secondary injury to the spine often arises from increased pressure (e.g. swelling, edema, hemorrhage) or from hypoperfusion or hypoxia (e.g., vascular injury). While the optimal treatment for secondary injury has not been established, providers should protect the injury site. Protecting the injury site from pressure may be as important as reducing spinal movement.
- In some circumstances, extrication of a patient using traditional spinal immobilization techniques may result in greater spinal movement or may dangerously delay extrication.
- Patients with penetrating trauma DO NOT require spinal motion restriction. All patients who have suffered possible spinal trauma should be handled gently and spinal motion should be minimized.
- Even with neurologic deficits caused by transection of the spinal cord, additional movement will not worsen an already catastrophic injury. Emphasis should be on airway and breathing management, treatment of shock, and rapid transport to a Level 1 or 2 trauma center.
- Caution should be exercised in older patients (e.g., 65 years or older) and in very young patients (e.g., less than 3 years of age), as spinal assessment may be less sensitive in discerning spinal fractures in these populations.

Long backboards do not have a role for patients being transported between facilities. If the sending facility has the patient on a long backboard or is asking EMS to use a long backboard for transport, EMS providers should discuss not using a long backboard with the sending facility physician before transporting a patient. If a long backboard is used, it should be padded to minimize patient discomfort.

Protocol Continues
EMT/ADVANCED EMT/PARAMEDIC STANDING ORDERS

- Routine Patient Care.
- Maintain manual in-line stabilization during assessment.
- Minimize spinal movement during assessment and extrication.
- Self-extrication by patient is allowable if patient is capable.
- A long backboard, scoop stretcher, vacuum mattress, or other appropriate full length extrication device may be used for extrication if needed. Do not use short board or KED device.
- Apply adequate padding to prevent tissue ischemia, minimize discomfort and maintain spinal neutrality after removing helmet or pads.

If patient requires spinal motion restriction:

- Apply a rigid cervical collar.
- Allow ambulatory patients to sit on stretcher and then lie flat. “Standing Take-Down” is eliminated.
- Position backboarded patient on stretcher then remove backboard by using log roll or lift-and-slide technique.
- Situations or treatment priorities may require patient to remain on rigid vacuum mattress or backboard including the combative patient, elevated intracranial pressure see Traumatic Brain Injury 4.7 or rapid transport of unstable patient.
- With patient lying flat, secure patient firmly with all stretcher straps and leave collar in place. Instruct patient to avoid moving head or neck as much as possible.
- Elevate stretcher back only if necessary for patient compliance, respiratory function, or other significant treatment priority.
- If patient poorly tolerates collar (e.g., due to anxiety, shortness of breath, torticollis), replace with towel roll and/or padding.
- Patients with nausea or vomiting may be placed in a lateral recumbent position. Maintain neutral head position with manual stabilization, padding/pillows, and/or patient’s arm.

Pediatric Patients Requiring a Child Safety Seat

If child requires spinal motion restriction, transport in a child safety seat see Pediatric Transportation Policy 8.13.

- Apply cervical collar. Use rolled towels/padding if infant/child will not tolerate collar.
- Patient may remain in own safety seat after motor vehicle crash if it has a self-contained harness with a high back and two belt paths and is undamaged. If all criteria are not met, use ambulance’s safety seat.
- If required treatment (e.g., airway management) cannot be performed in a safety seat, secure patient directly to stretcher using padding and pediatric-sized restraints.

RED FLAG: Mechanisms that indicate a high risk for spinal injury include:

- Motor vehicle crash >60 mph, rollover, ejection (low-speed, rear-end can usually be excluded).
- Falls >3 feet/5 stairs (patient standing with feet 3’ above floor).
- Axial load to head/neck (e.g., diving accident, heavy object falling onto head, contact sports).
- Significant injury or mechanism of injury above the clavicle.
- Injuries involving motorized recreational vehicles.
- Bicycle struck/collision.
High Risk or Questionable Injury Mechanism

Patient is incapable of participating in assessment

Midline spinal pain or tenderness with palpation

Abnormal (i.e. not baseline) neurological function or motor strength in any extremity.

Numbness or tingling (paresthesia)

Sensation is diminished and/or asymmetrical (or baseline for patient)

Cervical flexion, extension and/or rotation elicits midline spinal pain

Spinal Motion Restriction Unnecessary

Spinal Motion Restriction required. Collar patient, place flat on the cot and secure
Thoracic Injuries

Adult & Pediatric

EMT/ADVANCED EMT STANDING ORDERS

- Routine Patient Care.
- If in shock, see [Shock Traumatic Protocol 4.4](#).
- Impaled Objects:
 - Secure in place with a bulky dressing.
- Open chest wound:
 - Cover with an occlusive dressing or use a commercial device; if the patient’s condition deteriorates, remove the dressing momentarily, then reapply.
- Flail segment with paradoxical movement and in respiratory distress:
 - Consider positive-pressure ventilation.
 - Do not splint the chest.
- Consider Air Medical Transport.

PARAMEDIC STANDING ORDERS - ADULT

- Consider pain management, see [Pain Management Protocols 2.15](#).
- In presence of tension pneumothorax*, perform needle decompression using 14 – 16 gauge ≥ 3.00 inch angiocath. Repeat decompression may be necessary with returned signs of tension pneumothorax.

PARAMEDIC STANDING ORDERS - PEDIATRIC

- Consider pain management, see [Pain Management Protocols 2.15](#).
- In presence of tension pneumothorax*, perform needle decompression using 14 – 16 gauge ≥ 2.00 inch angiocath. Repeat decompression may be necessary with returned signs of tension pneumothorax.

*Signs and symptoms of Tension Pneumothorax:

- Asymmetric or absent unilateral breath sounds
- Increasing respiratory distress or hypoxia
- Increasing signs of shock including tachycardia and hypotension
- JVD
- Possible tracheal deviation above the sternal notch (late sign)

PEARLS:

Needle decompression sites, as trained:

- 2\(^{nd}\) intercostal mid clavicular.
- 4\(^{th}\) to 5\(^{th}\) intercostal anterior axillary.
4.7 Traumatic Brain Injury (TBI) Adult & Pediatric

EMT STANDING ORDERS - ADULT
- Routine Patient Care.
- If breathing is inadequate, ventilate with 100% oxygen utilizing normal ventilation parameters, maintaining $\text{SpO}_2 > 90\%$.
- If capnography is available:
 - Ventilate to maintain a capnography of 35 – 40mmHg.
 - Do not hyperventilate unless clear signs of cerebral herniation are present.
 - If signs of cerebral herniation are present, maintain capnography of 30 – 35 mmHg. If capnography is not available, ventilate at the following rates:
 - Adult: 20 breaths per minute.
 - Child: 25 breaths per minute.
 - Infant: 30 breaths per minute.
 - Discontinue hyperventilation when signs/symptoms improve.
- Administer 0.9% NaCl (in the form of small boluses, i.e., 250 mL) to maintain systolic blood pressure greater than 110 mm Hg.
- Total volume should not exceed 2000 mL without consultation with Medical Control. Do not delay transport for IV access.
- Routine Patient Care.
- If breathing is inadequate, ventilate with 100% oxygen utilizing normal ventilation parameters, maintaining $\text{SpO}_2 > 90\%$.
- If capnography is available:
 - Ventilate to maintain a capnography of 35 – 40mmHg.
 - Do not hyperventilate unless clear signs of cerebral herniation are present.
 - If signs of cerebral herniation are present, maintain capnography of 30 – 35 mmHg. If capnography is not available, ventilate at the following rates:
 - Adult: 20 breaths per minute.
 - Child: 25 breaths per minute.
 - Infant: 30 breaths per minute.
 - Discontinue hyperventilation when signs/symptoms improve.
- Assess and document pupillary response and Glasgow Coma Scale every 5 minutes.
- Check blood glucose; if hypoglycemic, see Hypoglycemia Protocol 2.9.
- For moderate to severe TBI, utilize long backboard for spinal motion restriction and elevate patient’s head to help control intracranial pressure (ICP).

ADVANCED EMT STANDING ORDERS - ADULT
- Administer 0.9% NaCl (in the form of small boluses, i.e., 250 mL) to maintain systolic blood pressure greater than 110 mm Hg.
 - Total volume should not exceed 2000 mL without consultation with Medical Control. Do not delay transport for IV access.

PARAMEDIC STANDING ORDERS - ADULT
- Consider intubation if GCS is <8.
- Consider sedation for patients that are combative and may cause further harm to self and others.
 - *Midazolam 2.5 mg IV/IN may repeat once in 5 minutes or; 5 mg IM may repeat once in 10 minutes, OR
 - Lorazepam 1 mg IV, may repeat once in 5 minutes or; 2 mg IM may repeat once in 10 minutes, OR
 - Diazepam 2 mg IV; may repeat once in 5 minutes.

*For IN administration of midazolam use a 5 mg/mL concentration.
PARAMEDIC STANDING ORDERS - PEDIATRIC

- Administer fluid bolus 20 mL/kg; may repeat x2 (maximum total 60 ml/kg) to improve clinical condition (capillary refill time ≤ 2 seconds, equal peripheral and distal pulses, improved mental status, normal breathing).
- Administer fluid in a pediatric patient with normal systolic blood pressure and who has other signs of decreased perfusion including tachycardia, loss of peripheral pulses, and delayed capillary filling time of >2 seconds.
- Consider sedation for patients that are combative and may cause further harm to self and others.
 - *Midazolam 0.05 mg/kg IV/IM or 0.1 mg/kg IN (maximum dose 3 mg); may repeat once in 5 minutes, OR*
 - Lorazepam 0.05 mg/kg IV/IM (maximum dose 1 mg); may repeat once in 5 minutes, OR
 - Diazepam 0.1 mg/kg IV (maximum dose 5 mg); may repeat once in 5 minutes.

*For IN administration of midazolam use a 5 mg/mL concentration.

SIGNS OF HERNIATION (2 or More)

- Extensor posturing, lack of motor response to noxious stimuli.
- Asymmetric, dilated, or non-reactive pupils.
- Decrease in the GCS >2 points from a patient’s best score, in a patient with an initial GCS <9.

PEARLS:

- Prevention of hypoxia and hypotension are imperative to prevent secondary brain injury.
- Intubation should be approached with extreme caution as it has been associated with worse outcomes when performed in the out-of-hospital environment for patients with traumatic brain injury.
PARAMEDIC STANDING ORDERS – ADULT

INDICATIONS:
- Evidence of significant blunt or penetrating trauma (e.g. ejection from automobile, fall > 20 feet, pedestrian struck, penetrating injury to neck, torso, etc.).
- Evidence or concern for severe external and/or internal hemorrhage (bleeding requiring tourniquet, amputation proximal to wrist or ankle, unstable pelvis, two or more long bone fractures, concern for significant intra-thoracic or intra-abdominal injury, etc.).
- Presence of one or more markers of hemodynamic instability.
- Sustained systolic blood pressure < 90 mmHg.
- Sustained heart rate > 110 after pain adequately treated.
- Injury must have occurred within the past 3 hours.

CONTRAINDICTION:
- < 15 years old.
- Previous allergic reaction to TXA.
- Isolated head injury.
- Injury > 3 hours old.
- Patients who have received or will receive prothrombin complex concentrate (PCCs), factor VIIa, or factor IX complex concentrates.
- Women who are known or suspected to be pregnant with a fetus of viable gestational age (> 24 weeks).

PROCEDURE:
- Mix 1 gram of TXA in 50 - 100 ml of 0.9% NaCl
- Infuse over approximately 10 minutes IV or IO
- Notify receiving facility of TXA administration prior to arriving.

PEARLS
- The greatest benefit is seen when TXA is administered to patients within 1 hour of injury.
- Rapid IV push may cause hypotension.
- If there is a new onset of hypotension, slow the TXA infusion.
- Protect patient from extremes in temperatures.
- Do not administer in the same line as blood products, rFVIIa, or PCN.
- Good documentation of time of injury, time of TXA administration is necessary.
The goal of good airway management is good gas exchange.

ASSESSMENT
Each patient presents unique problems that cannot be fully outlined in any algorithm. As such, the provider must rely on thorough assessment techniques and consider each of the following:

Airway Patency: Assess for airway obstruction or risk of impending obstruction due to facial injuries, mass, foreign body, swelling, etc. Assess for presence/absence of gag reflex.

Ventilatory Status: Assess for adequate respiratory effort and impending fatigue/failure/apnea. Assess for accessory muscle use, tripod positioning, the ability of the patient to speak in full sentences. If available, assess capnography.

Oxygenation: Any oxygen saturation < 90% represents relatively severe hypoxia and should be considered an important warning sign. In addition to oxygen saturation, assess for cyanosis.

Airway Anatomy: Before attempting airway maneuvers or endotracheal intubation, especially with the use of RSI, assess patient anatomy to predict the probability of success and the need for backup device or technique.

- First, assess for difficulty of mask seal. Patients with facial hair, facial fractures, obesity, no teeth, pregnancy, extremes of age, and pathologically stiff lungs (COPD, acute respiratory distress syndrome, etc.) may require special mask techniques or alternatives.

- Next assess for difficulty of intubation. Patients with a short neck, the inability to open their mouth at least three finger widths (or other oral issues such as a large tongue or high arched palate), less than three finger-widths of thyromental distance (or a receding jaw), reduced atlanto-occipital movement (such as in suspected c-spine injury), obesity or evidence of obstruction (such as drooling or stridor) may be difficult to intubate.

DEVISE A PLAN
1. Each patient will present unique challenges to airway management. Therefore, before any intervention is attempted, the provider should contemplate a plan of action that addresses the needs of the patient and anticipates complications.
2. Airway management is a continuum of interventions, not an “all or none” treatment. Frequently patients may only need airway positioning or a nasal or oral airway to achieve adequate ventilation and oxygenation. Others will require more invasive procedures. The provider should choose the least invasive method that can be employed to achieve adequate ventilation and oxygenation.
3. Continually reassess the efficacy of the plan and change the plan of action as the patient’s needs dictate.
4. In children, a graded approach to airway management is recommended. Basic airway maneuvers and basic adjuncts followed by bag-valve-mask ventilation are usually effective.

BASIC SKILLS
Mastery of basic airway skills is paramount to the successful management of a patient with respiratory compromise. Ensure a patent airway with the use of:

- Chin-lift/jaw-thrust
- Nasal airway (can be used in combination with oral airways, use with caution if suspected facial fractures)
- Oral airway (can be used in combination with nasal airways)
- Suction
- Removal of foreign body

Provide ventilation with a bag-valve-mask (BVM). Using a PEEP valve set at 5 - 15 cmH₂O is recommended. Proper use of the BVM includes appropriate mask selection and head positioning so sternal notch and ear are at the same level, to ensure a good seal. If possible, utilization of the BVM is best accomplished with two people: one person uses both hands to seal the mask and position the airway, while the other person provides ventilation, until chest rise. If the patient has some respiratory effort; synchronize ventilations with the patient’s own inhalation effort.
ADVANCED AIRWAY SKILLS

The appropriate method of airway management should be determined based on patient condition. If basic procedures are deemed inappropriate or have proven to be inadequate then more advanced methods should be used. Procedures documenting the use of each device/technique listed below are found elsewhere in this manual.

CPAP/BiPAP: Continuous positive airway pressure (CPAP) or bilevel positive airway pressure (BiPAP) have been shown to be effective in eliminating the need for intubation and in decreasing mortality in properly-selected patients with acute respiratory distress.

Supraglottic Airways (SGA): Utilization of supraglottic airways is an acceptable alternative to endotracheal intubation as both a primary device or a back-up device when previous attempt(s) at ETT placement have failed. Each device has its own set of advantages/disadvantages and requires a unique insertion technique. Providers should have access to, and intimate knowledge of, at least one supraglottic airway.

ETT: The endotracheal tube is considered the optimal method of securing the airway in patients with significant respiratory distress and/or airway compromise. However, the incidence of complications is unacceptably high when intubation is performed by inexperienced providers or monitoring of tube placement is inadequate. The optimal method for managing an airway will, therefore, vary based on provider experience, emergency medical services (EMS) or healthcare system characteristics, and the patient’s condition. Use capnography continuously for placement and CO₂ monitoring. Use video laryngoscopy, if available and trained.

ETT Introducer – “Bougie”: All providers who attempt ETT placement should become intimately familiar with the use of a Bougie. It is the device used most often by anesthesiologists and emergency physicians for helping guide placement when a difficult airway is encountered. Bougie must be available for all intubations performed.

Cricothyrotomy: This procedure is indicated only when all other measures fail or you are presented with a situation in which intubation is contraindicated or in which you cannot intubate or otherwise ventilate the patient. Examples include:

- Massive facial trauma
- Upper airway obstruction due to edema, mass or foreign body

DOCUMENTATION

All efforts toward airway management should be clearly documented and, at the minimum, should include the following:

- Pre/post intervention vital signs including oxygen saturation as well as capnography (if available).
- Procedures performed/attempted, including number of failed attempts and who performed each attempt/procedure.
- Size of device(s) placed, depth of placement (if applicable).
- Placement confirmation: methods should include auscultation, condensation in the ETT, symmetrical chest wall rise, as well as capnography, if available.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Airway Management – Adult 5.1A

EMT STANDING ORDERS

- Routine patient care.
- Establish airway patency.
 - Open the airway.
 - Suction as needed.
 - Clear foreign body obstructions.
- Titrate oxygen saturation to 94% - 99%
- Consider inserting an oropharyngeal and/or nasopharyngeal airway adjunct.
- If patient has a tracheostomy tube, follow the procedure for Tracheostomy Care Procedure 5.10.
- Assist ventilations with a bag-valve-mask device and supplemental oxygen as needed.
- For adult Cardiac Arrest: consider insertion of a supraglottic airway; see procedures for Supraglottic Airways 5.9.

ADVANCED EMT STANDING ORDERS

- For adults in severe respiratory distress (Asthma/COPD/Pulmonary Edema/Near Drowning) consider use of CPAP. See CPAP Procedure 5.4.

PARAMEDIC STANDING ORDERS

- The appropriate method of airway management should be determined based on patient condition. If basic procedures are deemed inappropriate or have proven to be inadequate then more advanced methods should be used.
- Consider BiPAP Procedure 5.3.
- For impending respiratory failure with intact gag reflex or trismus: consider Nasotracheal Intubation, see Nasotracheal Intubation Procedure 5.6).
- For apnea/respiratory failure or impending respiratory failure with impaired or absent gag reflex: consider supraglottic airway device or intubation. See Supraglottic Airways 5.9 or Orotracheal Intubation 5.7).
- For adults with immediate, severe airway compromise where respiratory arrest is imminent and other methods of airway management are ineffective: consider Rapid Sequence Intubation see, Rapid Sequence Intubation Prerequisite Procedure 7.4).
 - Note: this procedure is only to be used by paramedics who are trained and credentialed to perform RSI by the NH Bureau of EMS.
- If feasible, place an orogastric tube to decompress the stomach.
- If you cannot establish an airway or ventilate:
 - Consider Cricothyrotomy – Percutaneous Procedure 5.2 OR
 - Consider *Surgical Cricothyrotomy – Bougie Assisted Prerequisite Procedure 7.5.
 *Note: this is a prerequisite procedure only to be used by paramedics who are trained and credentialed to perform bougie assisted surgical cricothyrotomy by the NH Bureau of EMS.
EMT STANDING ORDERS

- Routine patient care.
- Establish airway patency.
 - Open Airway.
 - Consider patient positioning by placing padding under shoulders to ensure sternal notch and ear are at the same level
 - Suction as needed.
 - Clear foreign body obstructions.
- If patient has a tracheostomy tube see Tracheostomy Care 5.10.
- Consider additional help.
- For respiratory distress:
 - Administer high concentration oxygen (preferably humidified) via mask positioned on face or if child resists, held near face.
 - Titrate oxygen saturation to 94% - 99%; observe for fatigue, decreased mentation, and respiratory failure.
 - For children with chronic lung disease or congenital heart disease, maintain or increase home oxygen level to patient’s target saturations.

 Note: Pulse oximetry is difficult to obtain in children. Do not rely exclusively on pulse oximetry. If child continues to exhibit signs of respiratory distress despite high oxygen saturation levels, continue oxygen administration.
- For respiratory failure or for distress that does not improve with oxygen administration:
 - Assist ventilations at rate appropriate for child’s age. Reference Pediatric Color Coded Appendix A3.
 - If unable to maintain an open airway through positioning, consider placing an oropharyngeal and/or nasopharyngeal airway.
- Determine if child’s respiratory distress/failure is caused by a preexisting condition
 - For Allergic Reaction/Anaphylaxis, refer to the Allergic Reaction/Anaphylaxis Protocol 2.2P.
 - For Asthma/Bronchiolitis/Croup, refer to the Asthma/Bronchiolitis/Croup Protocol 2.3P.
- For Pediatric Cardiac Arrest: consider insertion of a supraglottic airway; see procedures for Supraglottic Airways 5.9.
- The appropriate method of airway management should be determined based on patient condition. If basic procedures are deemed inappropriate or have proven to be inadequate then more advanced methods should be used.
- If feasible, place an orogastric tube to decompress the stomach.
- If you cannot establish an airway or ventilate, see Cricothyrotomy Percutaneous Procedure 5.2.

ADVANCED EMT STANDING ORDERS

- For pediatrics in severe respiratory distress due to asthma consider use of CPAP. See CPAP Procedure 5.4.

PARAMEDIC STANDING ORDERS

- The appropriate method of airway management should be determined based on patient condition. If basic procedures are deemed inappropriate or have proven to be inadequate then more advanced methods should be used.
- If feasible, place an orogastric tube to decompress the stomach.
- If you cannot establish an airway or ventilate, see Cricothyrotomy Percutaneous Procedure 5.2.

<table>
<thead>
<tr>
<th>Pediatric Respiratory Distress</th>
<th>Pediatric Respiratory Failure</th>
</tr>
</thead>
</table>
| - Child is able to maintain adequate oxygenation by using extra effort to move air.
 - Signs include increased respiratory rate, sniffing position, nasal flaring, abnormal breath sounds, head bobbing, intercostal retractions, mild tachycardia. | - Hallmarks of respiratory failure are respiratory rate less than 20 breaths per minute for children <6 years old; less than 12 breaths per minute for children <16 years old; and >60 breaths per minutes for any child; cyanosis, marked tachycardia or bradycardia, poor peripheral perfusion, decreased muscle tone, and depressed mental status. |

Respiratory distress in children and infants must be promptly recognized and aggressively treated as patient may rapidly decompensate.
This protocol is intended for the use of commercially prepared rapid cricothyrotomy devices. Devices requiring use of a guide wire may not be used. Approved devices have a plastic cannula preloaded onto a metal introducer (e.g., Rusch QuickTrach).

INDICATIONS:
Inability to adequately oxygenate and ventilate using less invasive methods including BVM, supraglottic airways and endotracheal intubation.

EQUIPMENT:
- Commercially prepared percutaneous cricothyrotomy device.
- Chlorhexadine wipes.
- Bag-valve-mask.
- Quantitative Waveform ETCO$_2$.

PROCEDURE:
(May vary slightly with different devices)
1. Position the patient supine and extend the neck as needed to improve anatomic view.
2. Prepare neck with Chlorhexadine.
3. Using non-dominant hand, stabilize larynx and locate the following landmarks: thyroid cartilage (Adam’s apple) and cricoid cartilage (solid ring below the thyroid cartilage). The cricothyroid membrane lies between these cartilages.
4. Insert needle bevel through soft tissue and cricothyroid membrane at 90-degree angle while aspirating with syringe.
5. As soon as air is freely aspirated stop advancing the needle as this indicates entry into the trachea.
6. Direct the needle tip inferiorly by modifying angle to 60-degrees from the patient’s head. Advance the assembly until the stopper is in contact with the skin. (Note: If air is not freely aspirated and the stopper has contacted the skin the stopper may need to be removed in order to reach the trachea. Be aware that if the stopper is removed there is increased risk of perforating the posterior aspect of the trachea.)
7. Remove the stopper while holding assembly firmly in place.
8. Hold the needle firmly in place and advance only the plastic cannula off the needle into the trachea until the flap rests on the neck. Carefully remove the needle and syringe.
10. Inflate cuff if one is present.
11. Apply BVM with waveform ETCO$_2$ and ventilate the patient.
12. Confirm placement by assessing for bilateral lung sounds and presence of quantitative and qualitative ETCO$_2$.
13. Frequently reassess placement and continuously monitor ETCO$_2$.
Bilevel Positive Airway Pressure (BiPAP) - ADULT

PARAMEDIC STANDING ORDERS

INDICATIONS
- Spontaneously breathing patient in severe respiratory distress due to Asthma/COPD, Congestive Heart Failure / Pulmonary Edema, Pneumonia or Drowning.

CONTRAINDICATIONS
- Cardiac/Respiratory arrest.
- Unable to follow commands.
- Unable to maintain their own airway.
- Agitated or combative behavior.
- Vomiting and/or active upper GI bleed.
- Respiratory distress secondary to trauma.
- Suspicion of pneumothorax.
- Not having a ventilator that is capable of delivering NPPV

PROCEDURE
1. Ensure adequate oxygen supply for the BiPAP device.
2. Explain the procedure to the patient. Be prepared to coach the patient for claustrophobia or anxiety.
3. Place the patient in an upright position.
4. Monitor the patients SpO₂, Capnography, ECG and Blood pressure.
5. Choose the appropriate sized mask for the patient.
6. Set the ventilator to the patient appropriate setting.
7. IPAP: Set to maintain sufficient support to generate a tidal volume between 6-8 ml/kg IBW; not to exceed 20 cmH₂O (See chart below).
8. EPAP: Adjusted as needed, minimum of 5cmH₂O; not to exceed 14 cmH₂O.
9. Pressure support to be no less than 5 cmH₂O (Difference between IPAP/EPAP).
10. Set back-up ventilatory rate of no less than 8 BPM.
11. Set FiO₂ to appropriate level to maintain an SpO₂ of 94 – 99%.
12. Recheck the mask for leaks and adjust as needed.
13. If the patient deteriorates and meets one or more of the contraindications above then discontinue the use BiPAP.

- Consider Supraglottic Airway 5.9, Intubation 5.6/5.9
- Consider Rapid Sequence Intubation 7.4 (if trained and credentialed)
- Consider administering anxiolytic:
 - *Midazolam 2.5 mg IV/IN may repeat once in 5 minutes or 5 mg IM may repeat once in 10 minutes OR
 - Lorazepam 0.5 – 1 mg IV may repeat once in 5 minutes or 1 – 2 mg IM may repeat once in 10 minutes OR
 - Diazepam 5 mg IV (then 2.5 mg every 5 minutes to total of 20 mg)

 *For IN administration of midazolam use a 5 mg/mL concentration.

Keep in mind BiPAP uses large volumes of oxygen.

<table>
<thead>
<tr>
<th>Height in Ft/Ln</th>
<th>MALE 6 mL/kg</th>
<th>MALE 8 mL/kg</th>
<th>FEMALE 6 mL/kg</th>
<th>FEMALE 8 mL/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>314</td>
<td>418</td>
<td>286</td>
<td>382</td>
</tr>
<tr>
<td>5.1</td>
<td>320</td>
<td>426</td>
<td>293</td>
<td>390</td>
</tr>
<tr>
<td>5.2</td>
<td>328</td>
<td>437</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>5.3</td>
<td>341</td>
<td>455</td>
<td>314</td>
<td>406</td>
</tr>
<tr>
<td>5.4</td>
<td>355</td>
<td>474</td>
<td>328</td>
<td>438</td>
</tr>
<tr>
<td>5.5</td>
<td>369</td>
<td>492</td>
<td>342</td>
<td>456</td>
</tr>
<tr>
<td>5.6</td>
<td>383</td>
<td>510</td>
<td>356</td>
<td>474</td>
</tr>
<tr>
<td>5.7</td>
<td>397</td>
<td>529</td>
<td>370</td>
<td>493</td>
</tr>
<tr>
<td>5.8</td>
<td>410</td>
<td>547</td>
<td>383</td>
<td>511</td>
</tr>
<tr>
<td>5.9</td>
<td>424</td>
<td>566</td>
<td>397</td>
<td>530</td>
</tr>
<tr>
<td>6</td>
<td>438</td>
<td>584</td>
<td>411</td>
<td>548</td>
</tr>
<tr>
<td>6.1</td>
<td>452</td>
<td>602</td>
<td>425</td>
<td>566</td>
</tr>
</tbody>
</table>

Administer benzodiazepines with caution in elderly patients or those with signs of hypercarbia or respiratory fatigue.
ADVANCED EMT STANDING ORDERS

INDICATIONS
- Spontaneously breathing patient in severe respiratory distress due to Asthma/COPD, Congestive Heart Failure / Pulmonary Edema, Pneumonia or Drowning.

CONTRAINDICATIONS
- Cardiac/Respiratory arrest.
- Unable to follow commands.
- Unable to maintain their own airway.
- Agitated or combative behavior.
- Vomiting and/or active upper GI bleed.
- Respiratory distress secondary to trauma.
- Suspicion of pneumothorax.
- Pediatric patient who is too small for the mask sizes available.

PROCEDURE
1. Ensure adequate oxygen supply for CPAP device.
2. Managing patient anxiety is extremely important. Reduce patient anxiety by coaching and minimize external stimuli as much as possible.
3. Place patient in upright position. Apply pulse oximetry, capnography nasal capture device and ECG as available and trained.
4. Choose appropriate sized device mask for patient, assemble the CPAP device, attach to oxygen supply and insure oxygen is flowing (follow manufacturer’s directions for preparation for your particular device).
5. Place mask over face and secure with straps until minimal air leak.
6. Adjust Positive End Expiratory Pressure (PEEP) to 5 - 15 cmH2O to effect for patient condition.
7. If device allows, titrate oxygen level to oxygen saturation of 94 – 99%.
8. Recheck mask for leaks and adjust straps as needed to minimize air leaks.
10. Monitor pulse oximetry, capnography and ECG as available and trained.
11. If patient stabilizes, maintain CPAP for duration of transport and notify receiving hospital to prepare for a CPAP patient.
12. If patient begins to deteriorate, discontinue CPAP and assist respirations by BVM with PEEP valve.
13. Document CPAP procedure, including time and provider. Document serial pulse oximetry and capnography readings to demonstrate effects.

If a commercial device is not available you may consider using a BVM with PEEP valve:
- Apply nasal cannula at 15 lpm
- Attach PEEP valve to BVM at desired PEEP level (5 – 15 cmH2O).
- Attach oxygen to BVM at least 15 lpm and ensure flow.
- Maintain continuous mask seal on patient to deliver CPAP.

PARAMEDIC STANDING ORDERS
- Consider Supraglottic Airway 5.9 or Intubation 5.6/5.7
- Consider Rapid Sequence Intubation 7.4 (if trained and credentialed)
- Consider administering anxiolytic:
 - *Midazolam 2.5 mg IV/IN may repeat once in 5 minutes or 5 mg IM may repeat once in 10 minutes OR
 - Lorazepam 0.5 – 1 mg IV may repeat once in 5 minutes or 1 – 2 mg IM may repeat once in 10 minutes OR
 - Diazepam 5 mg IV (then 2.5 mg every 5 minutes to total of 20 mg)

*For IN administration of midazolam use a 5 mg/mL concentration.

Administer benzodiazepines with caution in elderly patients or those with signs of hypercarbia or respiratory fatigue.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
PARAMEDIC STANDING ORDERS – ADULT

INDICATIONS
- Unable to fully visualize vocal cords during an intubation attempt.
- To facilitate routine placement of endotracheal tube.

LIMITATIONS
- Adult Bougies should not be used on less than 6.0 ETT.

PROCEDURE
1. Endotracheal tube may be preloaded on bougie if provider is familiar with technique being used. Always lubricate cuff of endotracheal tube with water-based lubricant.
2. Using techniques described in the Orotracheal Intubation Protocol 5.7 attempt to visualize the vocal cords. Always use all techniques necessary to optimize laryngeal view before trying to pass the bougie.
3. If the vocal cords are partially visualized, pass the bougie through the cords while attempting to feel signs of tracheal placement (see below). Gently advance bougie until holdup is felt. If the bougie does not stop advancing the bougie is likely in the esophagus.
4. If the vocal cords are not visualized, pass the bougie behind the epiglottis, guiding the tip of the bougie anteriorly toward the trachea and assess for signs of tracheal placement (see below). Do not attempt to pass the bougie if the epiglottis is not visualized. Gently advance bougie until holdup is felt. If the bougie does not stop advancing the bougie is likely in the esophagus.
5. With laryngoscope still in place, advance preloaded tube off bougie or have assistant load the tube onto the bougie and advance it to the lip line.
6. Advance the ETT over the Bougie, rotating the ETT about 1/4 turn counterclockwise so that the bevel is oriented vertically as the ETT passes through the vocal cords. This maneuver allows the bevel to gently spread the arytenoids with a minimum of force, thus avoiding injury. If resistance is felt, withdraw the ETT, rotating it in a slightly more counterclockwise direction, and advance the tube again. Advance the tube to a lip-line of 24 cm in an adult male, and 22 cm in an adult female or until cuff is seen passing through cords.
7. Holding the ETT firmly in place, have an assistant remove the Bougie.
8. Remove the laryngoscope.
9. Inflate the cuff with 5 – 10 ml of air.
10. Follow the procedures outlined in Procedure: Orotracheal Intubation 5.7 to confirm placement, secure the ETT, monitor and document placement of the ETT.

SIGNS OF TRACHEAL PLACEMENT
- The Bougie is felt to “hold up” as the airway narrows and is unable to be advanced further. This is the most reliable sign of proper Bougie placement. If the Bougie enters the esophagus, it will continue to advance without resistance.
- It may be possible to feel the tactile sensation of “clicking” as the Bougie tip is advanced downward over the rigid cartilaginous tracheal rings.
- The Bougie can be felt to rotate as it enters a mainstem bronchus. Usually it is a clockwise rotation as the Bougie enters the right mainstem bronchus, but occasionally it will rotate counterclockwise if the Bougie enters the left mainstem bronchus.
- If the patient is not paralyzed, he/she may cough.
INDICATIONS
- Impending respiratory failure with intact gag reflex or if jaw is clenched and unable to be opened.
- Inadequate ventilation/oxygenation with basic airway procedures.
 - The appropriate method of airway management should be determined based on patient condition. If basic procedures are deemed inappropriate or have proven to be inadequate then more advanced methods should be used.

CONTRAINDICATIONS
- Apnea.
- Nasal obstruction.
- Suspected basilar skull fracture.
- Patient fits on a pediatric length-based resuscitation tape (e.g., Broselow Tape).

PROCEDURE
1. Pre-medicate nasal mucosa with 2% lidocaine jelly and nasal decongestant spray, if available.
2. Pre-oxygenate the patient.
3. Select the largest and least obstructed nostril and insert a lubricated nasal airway to help dilate the nasal passage.
4. Lubricate the ETT with water-based lubricant.
5. Remove the nasal airway and gently insert the ETT with continuous capnography monitoring, keeping the bevel toward the septum (a gentle rotation movement may be necessary at the turbinates).
6. Continue to advance the ETT while listening for maximum air movement and watching for capnography wave form.
7. At the point of maximum air movement, indicating proximity to the level of the glottis, gently and evenly advance the tube through the glottic opening on inspiration. If resistance is encountered, the tube may have become lodged into the pyriform sinus and you may note tenting of the skin on either side of the thyroid cartilage. If this happens, slightly withdraw the ETT and rotate it toward the midline and attempt to advance tube again with the next inspiration.
8. Upon entering the trachea, the tube may cause the patient to cough, buck, strain, or gag. This is normal. Do not remove the ETT. Be prepared to control the cervical spine and the patient, and be alert for vomiting.
9. Placement depth from the nares to the tip of the tube should be approximately 28cm in males and 26 cm in females.
10. Inflate cuff with 5 – 10ml of air.
11. Confirm appropriate placement by capnography, symmetrical chest-wall rise, auscultation of equal breath sounds over the chest and a lack of epigastric sounds with bagging, and condensation in the ETT.
12. Secure the ETT, consider applying a cervical-collar.
13. Ongoing monitoring of ETT placement and ventilation status using capnography is required for all patients.

14. Document each attempt as a separate procedure so it can be time stamped in the ePCR. **An attempt is defined as placement of the tube into the patient’s nare.** For each attempt, document the time, provider, placement success, pre-oxygenation, airway grade, ETT size, placement depth, placement landmark (e.g. cm at the patient’s nare), and confirmation of tube placement including chest rise, bilateral, equal breath sounds, absence of epigastric sounds and end-tidal CO₂ readings.

If continued intubation attempts are unsuccessful (maximum of 2 attempts) consider Cricothyrotomy. See Cricothyrotomy Procedures 5.2 OR 7.5.

Post-Intubation Analgesia and Sedation:

Option 1:
- Ketamine 1 mg/kg ideal body weight (IBW) IV every 5 – 15 minutes, as needed.

Option 2:
- Fentanyl 50 - 100 mcg IV every 5-10 minutes, as needed.
AND
- Midazolam 2 - 5 mg IV every 5 – 10 minutes as needed **OR**
- Lorazepam 1 - 2 mg every 15 minutes as needed (maximum total 10 mg)

PEARL:
- Ketamine has analgesic properties and fentanyl may not be required if ketamine is used.
PARAMEDIC STANDING ORDERS – ADULT & PEDIATRIC

INDICATIONS
- Apnea/respiratory failure, impending respiratory failure, impaired or absent gag reflex.
- Inadequate ventilation/oxygenation with basic airway procedures.
 - The appropriate method of airway management should be determined based on patient condition. If basic procedures are deemed inappropriate or have proven to be inadequate then more advanced methods should be used.

CONTRAINDICATION
- Epiglottitis.
- Facial or neck injuries that prohibit visualization of airway anatomy (relative).

PROCEDURE

Direct Laryngoscopy or Direct Video Laryngoscopy:
1. Place patient in ear to sternal notch position and elevate head to 30° if possible. Ensure all preparation and planning steps are complete.
2. Insertion: Open the mouth fully and insert the tip of the blade into the mouth to the right and sweeping the tongue to midline. The laryngoscope should be gripped lightly as no significant force is needed until later steps. It is helpful, especially if there are substantial secretions, to lead with the suction catheter and suction as the laryngoscope is advanced.
3. Epiglottoscopy: SLOWLY advance the blade down the tongue at the midline until the epiglottis is seen. Be sure to control the tongue leaving space to the right for tube delivery. Keep the tip of the blade along the tongue and avoid allowing the laryngoscope to fall posterior.
4. Valleculoscopy: Gradually advance the blade until it is seated in the vallecula. The blade must engage the hypoepiglottic ligament in order to adequately lift the epiglottis. The ligament lies directly within the vallecula. If using a Miller blade pass tip of blade under the epiglottis to control it directly.
5. Laryngoscopy: Once the tip of Mac blade is seated in the vallecula or tip of Miller blade has passed the epiglottis lifting force should be applied forward and upward without rotating the handle backward. The epiglottis will lift or be displaced and the larynx will be exposed.
6. If using bougie: Once an optimal view is obtained pass the bougie through the cords. Tracheal rings may be felt if the coude tip remains pointing upright. Advance the bougie slowly until it lodges in the proximal bronchi. Be careful not to advance with too much force as tracheobronchial trauma may occur. If the bougie does not stop advancing this is suggestive of esophageal placement. Advance the lubricated endotracheal tube over the bougie without removing the laryngoscope. If the tube cannot be advanced through the cords rotate it 60° counterclockwise. Visualize the tube passing through the cords if possible and stop advancing once the cuff is past the cords. Remove the laryngoscope, hold tube firmly, and remove the bougie.
7. If using stylette: Ensure stylette is bent in “straight-to-cuff” fashion with 30° bend angle and tube cuff is lubricated. Once an optimal view is obtained pass the tube to the right and below the line-of-sight to the cords. The tube must be visualized passing through the cords. Advance tube until the cuff is seen passing through the cords. If resistance is felt rotate the tube clockwise. Once the tube is in place hold it firmly and remove the stylette.
8. Inflate ETT cuff with 5 - 10 mL of air and adjust inflation pressure if necessary. The pilot balloon should feel inflated but be easily compressible and not too hard.
9. Confirm tube placement via continued waveform capnography, presence of bilateral lung sounds, and absence of epigastric sounds.
Orotracheal Intubation

5.7

Airway Procedure

<table>
<thead>
<tr>
<th>PARAMEDIC STANDING ORDERS – ADULT & PEDIATRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Secure ETT and continue to monitor waveform capnography. Frequently reassess tube placement.</td>
</tr>
<tr>
<td>Indirect Video Laryngoscopy</td>
</tr>
<tr>
<td>(Devices such as Glidescope and King Vision that cannot be used for direct laryngoscopy)</td>
</tr>
<tr>
<td>1. Place patient in ear to sternal notch position and elevate head to 30° if possible. Ensure all preparation and planning steps are complete.</td>
</tr>
<tr>
<td>2. Insertion: Open mouth fully and insert blade at the midline. It is helpful, especially if there are substantial secretions, to lead with the suction catheter and suction as the laryngoscope is advanced.</td>
</tr>
<tr>
<td>3. Epiglottoscopy: Gradually advance the blade by rotating handle backward and allowing the tip of the blade to follow the tongue until the epiglottis is seen.</td>
</tr>
<tr>
<td>4. Valleculoscopy: Advance the tip of the blade until it is seated in the vallecula. DO NOT go to too deep. The tip of the blade may need to be slightly above the vallecula in order to facilitate tube passage. If you can see the cricoid ring through the cords you are too deep.</td>
</tr>
<tr>
<td>5. Laryngoscopy: Lift the jaw straight up with the blade exposing the larynx fully.</td>
</tr>
<tr>
<td>6. Tube passage for non-channeled devices: A lubricated ET tube loaded on a rigid or standard stylette should be used. The stylette should have a gradual curve at the end to almost a 90° angle. Pass the tube into the mouth from the right side. The tip should enter view from the bottom of the screen and toward the larynx. When the tube has just begun entering the cords the stylette should be popped up out of the tube slightly using your right thumb or with the help of an assistant. This will allow the tip of the tube to fall between the cords at the correct angle. Pass the tube until the cuff is past the cords. Note: It is not recommended to use a bougie with a non-channeled IVL laryngoscope as they are not easily maneuvered around the steep angle that is present.</td>
</tr>
<tr>
<td>7. Tube passage for channeled devices: Line up view on camera with the cords. Advance lubricated ETT down channel and visualize it passing through the cords. It may be helpful to preload a bougie in the tube and advance it through the cords first.</td>
</tr>
<tr>
<td>8. Inflate ETT cuff with 5 - 10 mL of air and adjust inflation pressure if necessary. The pilot balloon should feel inflated but easily compressible and not too hard.</td>
</tr>
<tr>
<td>9. Confirm tube placement via continued waveform capnography, presence of bilateral lung sounds, and absence of epigastric sounds.</td>
</tr>
<tr>
<td>10. Secure ETT tube and continue to monitor waveform capnography. Frequently reassess tube placement.</td>
</tr>
<tr>
<td>If intubation attempt is unsuccessful, ETT placement cannot be verified or ETT becomes dislodged:</td>
</tr>
<tr>
<td>Monitor oxygen saturation and end-tidal CO₂ AND Ventilate the patient with 100% oxygen via a BVM until ready to attempt intubation again. Consider insertion of supraglottic airway if additional intubation attempts are unlikely to be successful.</td>
</tr>
</tbody>
</table>

Techniques to improve laryngeal view:

- **Head Elevation:** Elevate the head by lifting with the laryngoscope or having an assistant lift the head from underneath.
- **External Laryngeal Manipulation (ELM):** The person intubating uses their right hand to manipulate the larynx to a position that is suitable. An assistant then holds the larynx in that position. Note: BURP and cricoid pressure are no longer recommended.
- **Jaw Thrust:** An assistant performs a jaw thrust to assist with tissue displacement.
Orotracheal Intubation 5.7

PARAMEDIC STANDING ORDERS – ADULT & PEDIATRIC

If continued intubation attempts are unsuccessful (maximum of 3 attempts per patient) consider Cricothyrotomy. See Cricothyrotomy Procedure 5.2 OR 7.5.

POST TUBE PLACEMENT CARE – ADULT
Option 1:
- Ketamine 1 mg/kg ideal body weight (IBW) IV every 5 – 15 minutes, as needed.

Option 2:
- Fentanyl 50 - 100 mcg IV every 5-10 minutes, as needed.

AND
- Midazolam 2 - 5 mg IV every 5 – 10 minutes as needed OR
- Lorazepam 1 - 2 mg every 15 minutes as needed (maximum total 10 mg)

POST TUBE PLACEMENT CARE – PEDIATRIC
Option 1:
- Ketamine 1 mg/kg IV every 5 - 15 minutes, as needed.

Option 2:
- Fentanyl 2 - 3 mcg/kg IV every 5 - 10 minutes as needed.

AND
- Midazolam 0.1 mg/kg IV (maximum single dose 2.5 mg) every 5 - 10 minutes as needed OR
- Lorazepam 0.1 mg/kg IV (maximum single dose 2 mg) every 15 minutes as needed (maximum total 10 mg)

Documentation
Document each attempt as a separate procedure so it can be time stamped in the ePCR. An attempt is defined as placement of the blade into the patient’s mouth. For each attempt, document the time, provider, placement success, preoxygenation, airway grade, ETT size, placement depth, placement landmark (e.g. cm at the patient’s teeth), and confirmation of tube placement including chest rise, bilateral equal breath sounds, absence of epigastric sounds and capnography readings.

PEARL: An intubation attempt is defined as a blade being introduced into the mouth.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
EMT/ ADVANCED EMT / PARAMEDIC STANDING ORDERS

INDICATIONS
- Obstruction of the airway (secondary to secretions, blood, and/or any other substance) in a patient currently being assisted by an inserted airway such as an endotracheal tube or supraglottic airway. For tracheostomy tube see Tracheostomy Care 5.10.

CONTRAINDICATIONS
- None.

PROCEDURE
1. Ensure the suction device is operable.
2. Pre-oxygenate the patient.
3. While maintaining aseptic technique, attach the suction catheter to the suction unit.
4. If applicable, remove ventilation device from the airway.
5. Insert the sterile end of the suction catheter into the tube without suction.
 Insert until resistance is met; pull back approximately 1 – 2 cm.
6. Once the desired depth is met, apply suction by occluding the port of the suction catheter and slowly remove the catheter from the tube using a twisting motion.
7. Suctioning duration should not exceed 15 seconds, using lowest pressure that effectively removes secretions.
8. Saline flush may be used to help loosen secretions and facilitate suctioning.
9. Re-attach the ventilation device to the patient.
EMT/ADVANCED EMT STANDING ORDERS

INDICATIONS:
- Cardiac Arrest.

RELATIVE CONTRAINDICATIONS:
- Severe maxillofacial or oral trauma.
- For devices inserted into the esophagus:
 - The patient has known esophageal disease.
 - The patient has ingested a caustic substance.
 - The patient has burns involving the airway.

PROCEDURE:
- Insertion procedure should follow manufacturer guidelines as each device is unique.
- Confirm appropriate placement by symmetrical chest-wall rise, auscultation of equal breath sounds over the chest and a lack of epigastric sounds with bag valve mask ventilation, and capnography, if available.
- Secure the device.
- Document the time, provider, provider level and success for the procedure.
- Complete all applicable airway confirmation fields including chest rise, bilateral, equal breath sounds, absence of epigastric sounds and end-tidal CO₂ readings.
- Reassess placement frequently, especially after patient movement.

PARAMEDIC STANDING ORDERS

INDICATIONS:
Inability to adequately ventilate a patient with a bag-valve-mask or longer EMS transports requiring a more definitive airway.
Back up device for failed endotracheal intubation attempt.

POST TUBE PLACEMENT CARE – ADULT
Option 1:
Ketamine 1 mg/kg ideal body weight (IBW) IV every 5 – 15 minutes, as needed.

Option 2:
Fentanyl 50 - 100 mcg IV every 5-10 minutes, as needed.
AND
Midazolam 2 - 5 mg IV every 5 – 10 minutes as needed OR
Lorazepam 1 - 2 mg every 15 minutes as needed (maximum total 10 mg)

POST TUBE PLACEMENT CARE – PEDIATRIC
Option 1:
Ketamine 1 mg/kg IV every 5 - 15 minutes, as needed.

Option 2:
Fentanyl 2 - 3 mcg/kg IV every 5 - 10 minutes as needed.
AND
Midazolam 0.1 mg/kg IV (maximum single dose 2.5 mg) every 5 - 10 minutes as needed OR
Lorazepam 0.1 mg/kg IV (maximum single dose 2 mg) every 15 minutes as needed (maximum total 10 mg)
E / A

Emt/Advanced Emt Standing Order – Adult & Pediatric

Indications
- An adult or pediatric patient with an established tracheostomy in respiratory distress or failure.

Procedure
- Consult with the patient’s caregivers for assistance.
- Assess tracheostomy tube: Look for possible causes of distress which may be easily correctable, such as a detached oxygen source.
- If the patient’s breathing is adequate but exhibits continued signs of respiratory distress, administer high-flow oxygen via non-rebreather mask or blow-by, as tolerated, over the tracheostomy.
- If patient’s breathing is inadequate, assist ventilations using bag-valve-mask device with high-flow oxygen.
- If on a ventilator, remove the patient from the ventilator prior to using bag-valve-mask device as there may be a problem with the ventilator or oxygen source.
- Suction if unable to ventilate via tracheostomy or if respiratory distress continues.
- Use no more than 100 mmHg suction pressure.
- If the tracheostomy tube has a cannula, remove it prior to suctioning.
- Determine proper suction catheter length by measuring the obturator.
- If the obturator is unavailable, insert the suction catheter approximately 2 – 3 inches into the tracheostomy tube. Do not use force!
- 2 – 3 ml saline flush may be used to help loosen secretions.
- If the patient remains in severe distress, continue ventilation attempts using bag-valve-mask with high-flow oxygen via the tracheostomy. Consider underlying reasons for respiratory distress and refer to the appropriate protocol for intervention.

P

Paramedic Standing Orders – Adult & Pediatric

Indications
- An adult or pediatric patient with an established tracheostomy, in respiratory distress or failure where EMT and Advanced EMT tracheostomy interventions have been unsuccessful.
- Dislodged tracheostomy tube.

Contraindications
- None.

Procedure:
- If the patient continues in severe respiratory distress, remove tracheostomy tube and attempt bag-valve-mask ventilation.
- If another tube is available from caregivers, insert into stoma and resume ventilation (a standard endotracheal tube may be used or the used tracheostomy tube, after being cleaned).
 - Bougie may be used to assist with placement of endotracheal tube into stoma.
- If unable to replace tube with another tracheostomy tube or endotracheal tube, assist ventilations with bag-valve-mask and high-flow oxygen.
PARAMEDIC – ADULT & PEDIATRIC

PURPOSE

- To define the methodology and practice for using a mechanical ventilator.
- To optimize oxygenation and ventilation of endotracheally intubated patients as well as patients with supraglottic airways.

INDICATIONS

- Adult patients with advanced airways placed by EMS prehospitaly. The use of ventilators in the PIFT environment is not addressed by this protocol.
- Adult and pediatric patients on their own ventilator:
 - If the ventilator is operational, transport patient with their ventilator and caregiver on previously prescribed ventilator settings.
 - If the ventilator is inoperable, assist caregiver with troubleshooting using the SCOPE mnemonic (see below). Use bag valve mask device and transition to EMS ventilator as necessary, if available.

CONTRAINDICATIONS

- Pediatric patients with advanced airway placed by EMS.

SPECIAL CONSIDERATIONS

- All patients receiving mechanical ventilation will have an appropriate size BVM with mask, an appropriately sized OPA, and a 10cc luer lock syringe readily accessible.

SETTINGS

The following initial settings are recommended:

Mode: Assist Control (AC) – Volume.

Tidal Volume: 6-8 mL/kg of Ideal Body Mass (see charts below):

<table>
<thead>
<tr>
<th>Height in Ft/In</th>
<th>MALE</th>
<th>6 mL/kg</th>
<th>8 mL/kg</th>
<th>FEMALE</th>
<th>6 mL/kg</th>
<th>8 mL/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>314</td>
<td>418</td>
<td></td>
<td>5.0</td>
<td>286</td>
<td>382</td>
</tr>
<tr>
<td>5.1</td>
<td>320</td>
<td>426</td>
<td></td>
<td>5.1</td>
<td>293</td>
<td>390</td>
</tr>
<tr>
<td>5.2</td>
<td>328</td>
<td>437</td>
<td></td>
<td>5.2</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>5.3</td>
<td>341</td>
<td>455</td>
<td></td>
<td>5.3</td>
<td>314</td>
<td>406</td>
</tr>
<tr>
<td>5.4</td>
<td>355</td>
<td>474</td>
<td></td>
<td>5.4</td>
<td>328</td>
<td>438</td>
</tr>
<tr>
<td>5.5</td>
<td>369</td>
<td>492</td>
<td></td>
<td>5.5</td>
<td>342</td>
<td>456</td>
</tr>
<tr>
<td>5.6</td>
<td>383</td>
<td>510</td>
<td></td>
<td>5.6</td>
<td>356</td>
<td>474</td>
</tr>
<tr>
<td>5.7</td>
<td>397</td>
<td>529</td>
<td></td>
<td>5.7</td>
<td>370</td>
<td>493</td>
</tr>
<tr>
<td>5.8</td>
<td>410</td>
<td>547</td>
<td></td>
<td>5.8</td>
<td>383</td>
<td>511</td>
</tr>
<tr>
<td>5.9</td>
<td>424</td>
<td>566</td>
<td></td>
<td>5.9</td>
<td>397</td>
<td>530</td>
</tr>
<tr>
<td>5.10</td>
<td>438</td>
<td>584</td>
<td></td>
<td>5.10</td>
<td>411</td>
<td>548</td>
</tr>
<tr>
<td>5.11</td>
<td>452</td>
<td>602</td>
<td></td>
<td>5.11</td>
<td>425</td>
<td>566</td>
</tr>
<tr>
<td>6.0</td>
<td>466</td>
<td>621</td>
<td></td>
<td>6.0</td>
<td>439</td>
<td>585</td>
</tr>
<tr>
<td>6.1</td>
<td>479</td>
<td>639</td>
<td></td>
<td>6.1</td>
<td>452</td>
<td>603</td>
</tr>
</tbody>
</table>

Protocol Continues
PARAMEDIC – ADULT & PEDIATRIC

Rate: Initially 8 - 12, titrate to appropriate EtCO2 based on patient’s condition (e.g. severe asthma, aspirin overdose, traumatic brain injury).

FiO₂: Start at 100% FiO₂, then titrate to maintain SpO₂ >94% (90% for COPD patients).

PEEP: 2 to 5 cmH₂O.

ALARMS SETTINGS

• High pressure alarm: 30 cmH₂O.
• Low pressure alarm, if available: 4 cmH₂O.

Further adjustments in ventilator settings may be done in conjunction with on or offline Medical Control.

SCOPE

S: Suction
C: Connections
O: Obstructions
P: Pneumothorax
E: Equipment/Tube Dislodgement
EMT/ADVANCED EMT/PARAMEDIC STANDING ORDER

Obtain 12 lead ECG with baseline vitals within 10 minutes if available and practical. Transmit per local guidelines.

INDICATIONS
- Congestive Heart Failure/Pulmonary Edema.
- Dysrhythmias.
- Suspected Acute Coronary Syndrome.
- Syncope.
- Shortness of breath.
- Stroke/CVA.
- Cardiac Arrest with Return of Spontaneous Circulation (ROSC).

PROCEDURE
1. Prepare ECG Monitor and connect cable with electrodes.
2. Properly position the patient (supine or semi-reclined).
3. Enter patient information (e.g., age, gender, name) into monitor, when able.
4. Prep chest as necessary, (e.g., hair removal, skin prep pads).
5. Apply chest and extremity leads using recommended landmarks:
 - RA – Right arm or shoulder.
 - LA – Left arm or shoulder.
 - RL – Right leg or hip.
 - LL – Left leg or hip.
 - V1 – 4TH intercostal space at the right sternal border.
 - V2 – 4TH intercostal space at the left sternal border.
 - V3 – Directly between V2 and V4.
 - V4 – 5TH intercostal space midclavicular line.
 - V5 – Level with V4 at left anterior axillary line.
 - V6 – Level with V5 at left midaxillary line.
6. Instruct patient to remain still.
7. Aquire the 12 lead ECG.
8. If 12 lead ECG indicates a STEMI (e.g., ECG identifies ***Acute MI Suspected*** and/or Paramedic interpretation) transport patient to the most appropriate facility in accordance with local STEMI guidelines/agreements. Notify receiving facility of a “STEMI Alert”.
9. For patients with continued symptoms consistent with acute coronary syndrome, perform repeat ECGs, as indicated, during transport to evaluate for evolving STEMI.
10. Copies of 12 lead ECG labeled with the patient’s name and date of birth should be left with the receiving hospital.
11. Document the procedure and time of the ECG acquisition in appropriate section of the Patient Care Record.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
PEARLS:

- Enter the patient’s age for proper interpretation.
- When transmitting either include the patient’s name or notify the receiving facility of the patient’s identity.
- Be alert for causes of artifact: dry or sweaty skin, dried out electrodes, patient movement, cable movement, vehicle movement, electromagnetic interference, static electricity.
- Dried out electrodes are a major source of artifact; keep in original sealed foil pouches; plastic bags are not sufficient. Use all the same kind of electrodes. Press firmly around the edge of the electrode, not the center.
- Sweaty patients should be dried thoroughly. Consider tincture of benzoin. Dry skin is especially problematic. Clean the site (e.g., alcohol prep pad) and gently abrade skin using a towel or 4x4 gauze.
- Check for subtle movement: toe tapping, shivering, muscle tension (e.g., hand grasping rail or head raised to “watch”).
Indications:
- Routine monitoring of ventilation status and indirectly circulatory and metabolic status in adults and children with:
 - Respiratory distress (CHF, COPD, Asthma, Pulmonary embolus)
 - Altered mental status
 - Traumatic brain injury
 - Diabetic ketoacidosis
 - Circulatory shock
 - Sepsis
 - Cyanide and/or carbon monoxide poisoning
 - Administration of sedative medication

- Advanced Airway Devices:
 - Confirm and document placement of advanced airway devices, see [Airway Management 5.0 and 5.1 A&P](#)
 - To confirm continued placement of advanced airway devices after every patient move and at transfer of care.

- Monitoring of CPR quality and for signs of return of spontaneous circulation (ROSC).
 - High quality chest compressions are achieved when the ETCO$_2$ is at least 20 mmHg. If ETCO$_2$ abruptly increases it is reasonable to consider that this as an indicator of ROSC.
 - To assist with termination of resuscitation efforts when ETCO$_2$ is <20 mmHg despite adjusting the quality of chest compressions.
 - Low CO$_2$ production after 20 minutes of effective CPR is a predictor of mortality. See [Resuscitation Initiation & Termination Policy 8.16](#).

Procedure:
1. Attach the sensor to endotracheal tube, supraglottic airway, BVM or apply cannula with ETCO$_2$ mouth scoop or bi-cannula.
2. Assess ETCO$_2$ numeric levels and waveform:
 - Normal ETCO$_2$ range 35-45 mmHg
 - Elevated ETCO$_2$ may indicate hypoventilation/CO$_2$ retention.
 - Low ETCO$_2$ may indicate hyperventilation, low perfusion, pulmonary embolus, sepsis.

3. With abnormal ETCO$_2$ levels consider adjusting rate and depth of ventilations.

Any abrupt loss of ETCO$_2$ detection or loss of continuous waveform may indicate a catastrophic failure of the airway, apnea, drug overdose, deep sedation and/or cardiac arrest warranting assessment of the airway, breathing, circulation, and/or airway device.

PEARLS
- Colorimetric CO$_2$ detectors are not an approved alternative to quantitative waveform capnography. Airway device placement confirmation and device monitoring should always be confirmed using quantitative waveform capnography.
- Numeric capnometry and capnography waveform morphology should be documented in the ePCR.
PARAMEDIC STANDING ORDERS – ADULT

INDICATION: Refractory Ventricular Fibrillation / Tachycardia after 5 unsuccessful shocks and a second manual defibrillator is available.

- **Recurrent ventricular fibrillation/tachycardia** is defined as SUCCESSFULLY CONVERTED by standard defibrillation techniques but subsequently returns. It should NOT be treated by double sequential external defibrillation. It is managed by treatment of correctable causes and use of anti-arrhythmic medications in addition to standard defibrillation.
- **Refractory ventricular fibrillation/tachycardia** is defined as NOT CONVERTED by standard defibrillation. It is initially managed by treating correctable causes and with antiarrhythmic medications. If these methods fail to produce a response, double sequential external defibrillation may be beneficial.

PROCEDURE:
1. Prior to attempting Double Sequential Defibrillation, at least one shock should be given using a different vector. Change pad placement from anterior-apex to anterior-posterior.
2. Ensure quality CPR and minimally interrupted chest compressions during pad application and procedure.
3. Apply new set of external defibrillation pads adjacent to, but not touching the pad set currently in use.
4. Assure that controls for the second manual defibrillator are accessible to the team leader.
5. Verify that both cardiac manual defibrillators are attached to the patient, that all pads are well adhered, and simultaneously charge both manual defibrillators.
6. When both monitors are charged to maximum energy settings and all persons are clear, push both shock buttons as synchronously as possible.
7. May repeat procedure every 2 minutes as indicated if refractory ventricular fibrillation/tachycardia persists.

PEARLS
- Continue compressions when defibrillators are charging.
- During interruptions compressor’s hands should hover over chest.
- Pre-charge manual defibrillators prior to rhythm check to ensure rapid defibrillation if a shockable rhythm is present. If no shock is indicated, disarm the device (dump the charge).
- Depending on your local hospital resources, some refractory ventricular fibrillation patients may benefit from emergent cardiac catheterization. For this small patient population, transportation (ideally with a mechanical CPR device) may be indicated. Transporting these patients directly to the cath lab should be done in collaboration with on-line medical control and interventional cardiology.

Photo Courtesy of Emergency Medicine Reviews and Perspectives
PARAMEDIC STANDING ORDERS – ADULT & PEDIATRIC

INDICATIONS

- Intubated patients (Orogastric preferred)

CONTRAINDICATIONS

- If suspected basilar skull fracture, do not use nasogastric tube.
- Severe facial trauma with distortion of airway anatomy

EQUIPMENT

- Salem sump gastric tube of appropriate size; for pediatric size refer to the length based tape.
- 60 mL syringe with Toomey tip (catheter tip); use 5-10 mL syringe for pediatric
- Lubricant
- Stethoscope
- Method of securing

OROGASTRIC TUBE PROCEDURE

1. Size a Salem sump gastric tube by measuring from the epigastrium, around the ear, and to the mouth.
2. Lubricate the distal portion of the tube with water based lubricant.
3. If possible, flex the head forward to better align the esophagus for tube placement.
4. Insert the tube into the mouth and advance until the measured depth is reached. If the tube coils or does not advance, pull it back, reposition, and try again. A maximum of three attempts are allowed.
5. Once the tube is in place confirm placement by instilling air into the tube using 60 mL syringe and auscultating the epigastrium for gastric sounds.
6. Secure the tube with tape or other device as necessary.
7. Perform low intermittent suctioning.

NASOGASTRIC TUBE PROCEDURE

1. Size a Salem sump gastric tube by measuring from the epigastrium, around the ear, and to the nose. The largest and least occluded nares should be utilized.
2. Lubricate the distal portion of the tube with water based lubricant.
3. If possible, flex the head forward to better align the esophagus for tube placement.
4. Insert the tube into the nares and advance until the measured depth is reached. If the tube coils or does not advance, pull it back, reposition, and try again. A maximum of three attempts are allowed.
5. If possible, it is helpful to have the patient drink water through a straw while advancing the tube to facilitate swallowing.
6. Once the tube is in place confirm placement by instilling air into the tube using 60 mL syringe and auscultating the epigastrium for gastric sounds.
7. Secure the tube with tape or other device as necessary.
8. Perform low intermittent suctioning.
ADVANCED EMT/PARAMEDIC STANDING ORDERS– ADULT & PEDIATRIC

Provider Level Approved
- Advanced EMT, commercial intraosseous introduction device (e.g., EZ-IO).
- Paramedic.

Definition
Intraosseous insertion establishes access in a patient where venous access cannot be rapidly obtained. The bone marrow space serves as a “noncollapsible vein" and provides access to the general circulation for the administration of fluids and resuscitation drugs. This protocol applies to all appropriate IO insertion sites.

Indication
- Drug or fluid resuscitation of a patient in need of immediate life-saving intervention and unable to rapidly obtain peripheral IV access.
- May be used as a primary vascular device in cardiac arrest.

Contraindications
- Placement in or distal to a fractured bone.
- Placement near prosthetic limb, joint or orthopedic procedure.
- Placement at an infected site.
- Inability to find landmarks.

Complications
- Infusion rate may not be adequate for resuscitation of ongoing hemorrhage or severe shock, extravasation of fluid, fat embolism, and osteomyelitis (rare).

Equipment:
- 15 – 19 gauge bone marrow needle or FDA-approved commercial intraosseous infusion device.
- Povidone-iodine or chlorhexidine solution and gloves.
- Primed IV tubing, IV stopcock, solution.
- 10 ml syringe with 0.9% NaCl.
- Pressure pump/bag or 60 ml syringe for volume infusion or slow push.
- 1 vial of 2% lidocaine (preservative free).
- 5 mL syringe.

Procedure Continues
Approved sites:
- Per FDA-approved manufacturer’s recommendation.

Procedure:
When using an FDA-approved commercial IO device, follow manufacturer’s instructions.

1. Place the patient in a supine position.
2. Identify the bony landmarks as appropriate for device.
3. Prep the site.
4. Needle is appropriately placed if the following are present:
 - Aspiration with syringe yields blood with marrow particulate matter.
 - Infusion of saline does not result in infiltration at the site.
 - Needle stands without support.
5. Attach IV tubing, with or without stopcock.
6. For alert patients prior to IO syringe bolus (flush) or continuous infusion:
 - Ensure that the patient has no allergies or sensitivity to lidocaine.
 - If using an extension tubing without stopcock, prime with lidocaine 2% (preservative free).
 - SLOWLY administer lidocaine 2% (preservative free) through the IO device catheter into the medullary space.
 - Allow 2 – 5 minutes for anesthetic effects, if feasible:
 - Adult: 1 – 2.5 ml (20 – 50 mg) 2% lidocaine.
 - Pediatric: 0.5 mg/kg 2% lidocaine.
7. Flush with 10 ml of 0.9% NaCl rapid bolus prior to use:
 - Recommend use of a stop cock inline with syringe for bolus infusions.
 - Use a pressure bag for continuous 0.9% NaCl infusions.
 - Infuse emergent pressors using an IV pump.
8. Stabilize needle:
 - Consider utilizing a commercially available stabilization device as recommended by the manufacturer, OR
 - Stabilize needle on both sides with sterile gauze and secure with tape (avoid tension on needle).

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
EMT/ ADVANCED EMT STANDING ORDERS

INDICATIONS
Any patient who exhibits an altered mental status and who may harm himself, herself, or others or interfere with their own care may be restrained to prevent injury to the patient or crew and facilitate necessary medical care. Restraining must be performed in a humane manner and used only as a last resort.

PROCEDURE
1. Request law enforcement assistance, as necessary.
2. When appropriate, attempt less restrictive means of managing the patient, including verbal de-escalation.
3. Ensure that there are sufficient personnel available to physically restrain the patient safely.
4. Restrain the patient in a lateral or supine position. No devices such as backboards, splints, or other devices may be placed on top of the patient. Never hog-tie a patient. In order to gain control, the patient may need to be in a prone position, but must be moved to supine or lateral position as soon as possible.
5. The patient must be under constant observation by the EMS crew at all times. This includes direct visualization of the patient as well as cardiac, pulse oximetry, and quantitative waveform capnography monitoring, if available.
6. The extremities that are restrained should have a circulation check at least every 15 minutes. The first of these checks should occur as soon possible after restraints are placed.
7. Documentation in the EMS Incident Report should include the reason for the use of restraints, the type of restraints used, the time restraints were placed, and circulation checks.
8. If a patient is restrained by law enforcement personnel with handcuffs or other devices that EMS personnel cannot remove, a law enforcement officer should accompany the patient to the hospital in the transporting ambulance. If this is not feasible, the officer MUST follow directly behind the transporting ambulance to the receiving hospital.

PARAMEDIC STANDING ORDERS
- Paramedic Standing Orders continued next page.

Continued patient struggling against restraints may lead to hyperkalemia, rhabdomyolysis, and/or cardiac arrest, chemical restraint may be necessary to prevent continued forceful struggling by the patient.

PEARLS:
- There is an increase risk of apnea with >2 doses of benzodiazepines.
- Causes of combativeness may be due to comorbid medical conditions or due to hypoxia, hypoglycemia, drug and/or alcohol intoxication, drug overdose, brain trauma.
- Verbal de-escalation is the safest method and should be delivered in an honest, straightforward, friendly tone avoiding direct eye contact and encroachment of personal space.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Restraints 6.5

 PARAMEDIC STANDING ORDERS - ADULT

- **Midazolam 5 mg IM/IN, may repeat once in 10 minutes; or 2.5 mg IV, may repeat once in 5 minutes; OR**
- Lorazepam 2 mg IM, may repeat once in 10 minutes; or 1 mg IV, may repeat once in 5 minutes; OR
- Diazepam 2 mg IV (preferred route), may repeat once in 5 minutes; or 5 mg IM, may repeat once in 20 minutes.

For patients with suspected **Excited/Agitated Delirium**, extreme agitation or ineffective control with benzodiazepines above:

- **Ketamine (preferred):**
 - 4 mg/kg IM rounded to nearest 50 mg, maximum dose 500 mg, repeat 100 mg IM in 5 – 10 minutes. OR
- **Midazolam 5 mg IM/IN, may repeat once in 10 minute; or 2.5 mg IV may repeat once in 5 minutes AND**
- Haloperidol 10 mg IM; may repeat once in 10 minutes.

Contact **Medical Control** for additional doses.

- If cardiac arrest occurs with suspected excited delirium, consider early administration of: fluid bolus, sodium bicarbonate, calcium chloride/gluconate, see **Cardiac Arrest Protocol 3.2A**.

For acute dystonic reaction to haloperidol:

- Diphenhydramine 25 – 50 mg IV/IM.

 *For IN administration of midazolam use a 5 mg/mL concentration.

 For administration of ketamine use a 100 mg/mL concentration

 PARAMEDIC STANDING ORDERS - PEDIATRIC

Call **Medical Control** and consider:

- **Midazolam 5 mg/mL concentration (IM or IN preferred):**
 - 0.2 mg/kg IM/IN (single maximum dose 8 mg) repeat every 5 minutes; or
 - 0.1 mg/kg IV (single maximum dose 4 mg) repeat every 5 minutes, OR
- Lorazepam 0.1 mg/kg IV(single maximum dose 4 mg) repeat every 5 minutes, OR
- Diazepam 0.1 mg/kg IV (single maximum dose 5 mg IV) repeat every 5 minutes.

The patient must be under constant observation by the EMS crew at all times. This includes direct visualization of the patient as well as cardiac, pulse oximetry, and quantitative waveform capnography monitoring, if available.

- **Excited/Agitated Delirium** is characterized by extreme restlessness, irritability, and/or high fever. Patients exhibiting these signs are at high risk for sudden death.
- Medications should be administered cautiously in frail or debilitated patients; lower doses should be considered.
- Administer haloperidol with caution to patients who are already on psychotropic medications which may precipitate serotonin syndrome or malignant hyperthermia.
- Placing a patient in prone position creates a severe risk of airway and ventilation compromise and death.
EMT / ADVANCED EMT / PARAMEDIC STANDING ORDERS

EMS should be activated following Taser application in the following circumstances:
- The probe is embedded in the eye, genitals or bone.
- Seizure is witnessed after Taser application.
- There is excessive bleeding from probe site after probe removal.
- Cardiac arrest, complaints of chest pain, palpitations.
- Respiratory distress.
- Change in mental status after application.
- Pregnancy.

INDICATIONS FOR REMOVAL
- Patient with uncomplicated conducted electrical weapon (Taser) probes embedded subcutaneously in non-vulnerable areas of skin.

CONTRAINDICATIONS TO REMOVAL
- Patients with probe penetration in vulnerable areas of the body as mentioned below should be transported for further evaluation and probe removal.
 - Genitalia, female breast, or skin above level of clavicles.
 - Suspicion that probe might be embedded in bone, blood vessel, or other sensitive structure.

PROCEDURE
1. Ensure wires are disconnected from weapon.
2. Stabilize skin around probe using non-dominant hand.
4. Remove probe by pulling straight out in a single quick motion.
5. Removed probes should be handled and disposed of like contaminated sharps in a designated sharps container, unless requested as evidence by police.
6. Cleanse wound and apply dressing.
7. If last tetanus immunization was greater than 5 years, advise the patient that they may need one.
8. Obtain a refusal of care for patients refusing transport.

State and local law enforcement may use a conductive energy weapon called a Taser. When used, the device discharges a wire that, at the distal end, contains an arrow-like barbed projectile that penetrates the suspect’s skin and embeds itself, allowing a 5-second incapacitating electric shock. Current medical literature does not support routine medical evaluation for an individual after Taser application. In most circumstances probes can be removed by law enforcement without further medical intervention.
A tourniquet is a commercial device used to control a life threatening hemorrhage on an injured extremity to prevent exsanguination.

INDICATIONS:
- Life threatening extremity hemorrhage that cannot be controlled by other means.
- Serious or life threatening extremity hemorrhage in the face of operational considerations that prevent the use of less aggressive hemorrhage control techniques.

PROCEDURE:
1. If hemorrhage is not severe, attempt to control the hemorrhage with direct pressure, bandaging and elevation.
2. If a tourniquet is indicated:
 - Place tourniquet 2 – 3 inches proximal to wound on the affected extremity.
 - Tighten per manufacturer instructions until hemorrhage stops and distal pulses are extinguished.
 - If initial tourniquet fails to stop bleeding, ensure proper deployment of first tourniquet, and consider placement of a second tourniquet just proximal to first.
 - Document time of tourniquet application and communicate this clearly with receiving facility.
 - Do not cover tourniquet.
 - Dress wounds per standard wound care and consider use of hemostatic bandage.
 - Reassess for rebleeding frequently, especially after any patient movement.
 - Proper tourniquet placement often causes significant pain. Consider pain management, see Pain Protocol 2.15.
 - Do not remove or loosen tourniquet once hemostasis is achieved, unless in the extended care setting.

Extended Care Section: See the following page

In the absence of a commercial tourniquet (preferred), an improvised device e.g., cravat with windlass, blood pressure cuff could be used. The device must be a minimum of 2 inches wide, otherwise it can cut through the skin.

PEARLS:
- Do not apply tourniquets over clothing or joints. If wound is just distal to joint, the tourniquet should be placed just proximal to joint.
- Delay in placement of a tourniquet for life threatening hemorrhage significantly increases mortality. Do not wait for hemodynamic compromise to apply a tourniquet.
- If feasible, transport patients directly to a Level 1 or Level 2 trauma center and provide earliest possible notification / trauma alert.
- Damage to the limb from tourniquet application is unlikely if removed in several hours.
Consult Medical Control, if feasible.
If tourniquet has been in place for greater than 6 hours, do not remove.
If less than 6 hours consider Tourniquet Reassessment and Tourniquet Removal Algorithms

Tourniquet Reassessment Algorithm

- Patient in circulatory shock?
 - NO
 - YES

- Unstable clinical situation?
 - NO
 - YES

- Limited personnel/resources?
 - NO
 - YES

 Proceed to removal algorithm

Tourniquet Removal Algorithm

- Amputated Extremity?
 - NO
 - YES

 Leave tourniquet on and transport patient to the nearest trauma center, if feasible

- Apply pressure dressing, loosen tourniquet (leave it in place)

- Is there significant bleeding?
 - NO
 - YES

 Further significant bleeding

 Continue to assess for bleeding and transport to nearest trauma center.
Vascular Access via Central Catheters

6.8

PARAMEDIC – ADULT & PEDIATRIC

PROVIDER LEVEL:
- Paramedic who has taken the NH Bureau of EMS and Medical Control Board approved training module.

INDICATIONS
- In the presence of a life threatening condition, with clear indications for immediate use of medication or fluid bolus. (Not for prophylactic IV access.)

CONTRAINDICATIONS
- Suspected infection at skin site.

PROCEDURE
Determine the type of catheter present: PICC, Broviac, Hickman, Groshong, Mediport, etc.

Procedure for peripherally inserted Central Catheter (Cook, Neo-PICC, etc.) and Tunneled Catheter (Broviac, Hickman, Groshong, etc.)
1. Utilize good hand-hygiene with either alcohol gel based cleanser or soap and water.
2. Utilize respiratory precautions if indication of respiratory infection in provider or patient:
 - Mask the provider and/or the patient.
3. Prepare equipment:
 - 2 -3 10 ml prefilled syringes of 0.9% NaCl.
 - Sterile gloves (if available).
4. If more than one lumen is available (PICCs, Hickmans and Broviacs can have one, two, or three lumens), select the largest lumen available.
5. Vigorously cleanse the cap of the lumen with chlorhexidine or 70% alcohol prep pad.
 - Allow to dry.
6. Unclamp the selected catheter lumen and using a prefilled 10 ml syringe.
 - Vigorously flush the catheter using a pulsating technique and maintaining pressure at the end of the flush to prevent reflux of fluid or blood.
 - If catheter does not flush easily (note that a PICC line will generally flush more slowly and with greater resistance than a typical intravenous catheter), re-clamp the selected lumen and attempt to use another lumen (if present).
 - If unable to flush any of the lumens, the catheter is unable to be used.
7. Attach primed IV administration set and observe for free flow of IV fluid.
 - Utilizing an IV pump, set the flow rate based on the patient condition and in accordance to NH Protocols.

- Do not exceed recommended flow rates.
- Avoid taking a blood pressure reading in the same arm as the PICC.

<table>
<thead>
<tr>
<th>CATHETER</th>
<th>SIZE</th>
<th>MAX FLOW RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICC</td>
<td>Less than 2.0 fr</td>
<td>125 mL/hr</td>
</tr>
<tr>
<td>PICC</td>
<td>Greater than 2.0 fr</td>
<td>250 mL/hr</td>
</tr>
<tr>
<td>Groshong PICC</td>
<td>3 fr</td>
<td>240 mL/hr</td>
</tr>
<tr>
<td>Groshong PICC NXT</td>
<td>4 fr</td>
<td>540 mL/hr</td>
</tr>
<tr>
<td>Groshong PICC NXT</td>
<td>5 fr</td>
<td>200 mL/hr</td>
</tr>
<tr>
<td>Hickman/Broviac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hickman/Broviac – Power Port</td>
<td>8 – 9.5 fr</td>
<td>3000 mL/hr</td>
</tr>
</tbody>
</table>

PEARLS:
- There are many peripherally inserted, tunneled and/or implanted ports options. Providers should do their best to discern what option the patient has. Patient may be carrying a reference/wallet card about their device.
- PICC lines will not tolerate rapid infusions or infusions under pressure.
Procedure for implanted catheter (Port-a-Cath, P.A.S. port, Medi-port)

1. Utilize good hand-hygiene with either alcohol gel based cleanser or soap and water.
2. Utilize respiratory precautions if indication of respiratory infection in provider or patient.
 - Mask the provider and/or the patient.
3. Prepare all necessary equipment:
 - Non-coring, right angle needle specific for implanted vascular access ports.
 - 2 - 3 10 ml prefilled syringes of 0.9% NaCl.
 - Sterile infusion port cap.
 - Sterile gloves (if available).
 - Sterile occlusive dressing large enough to completely cover the insertion site.
4. Identify the access site; usually located in the chest.
5. Vigorously cleanse the access site with chlorhexidine or 70% alcohol prep pad.
 - Allow to dry.
6. Attach the infusion port cap to the end of the non-coring, right angle needle tubing.
7. Prime the non-coring needle with attached tubing with saline using one of the prefilled 10 ml syringes.
 - Leave the syringe attached to the tubing.
8. Palpate the port to determine the size and center of the device.
 - If not utilizing sterile gloves, re-clean the skin and apply new gloves.
9. Secure the access point port firmly between two fingers and firmly insert the non-coring needle into the port, entering at a direct 90° angle.
10. Aspirate 3 – 5 ml of blood with the syringe.
 - If unable to aspirate blood, re-clamp the catheter and do not attempt further use.
 - Dispose of aspirated blood in bio hazard container.
 - Asking the patient to cough may facilitate access of the port.
11. Flush the catheter with 3 – 5 ml 0.9% NaCl using a prefilled10ml syringe.
 - If catheter does not flush easily, do not attempt further use.
12. Attach IV administration set and observe for free flow of IV fluid.
 - Utilizing an IV pump, set the flow rate based on the patient condition and in accordance with NH Protocols.
13. Cover the needle and insertion site with the sterile occlusive dressing.

PEARLS:
- Many of the newer implanted ports are double lumen ports. Providers should ask the patient or family if they have a double lumen port or palpate carefully to discern this.
- Newer non-coring, right angle insertion needles have a hard plastic top which later serves as a safety device, housing the needle when the port is de-accessed.

Only non-coring, right angle needles specific for implanted ports are to be used for vascular access devices that are implanted in the patient. These are generally not carried by EMS units but may be provided by the patient.

Priming the tubing of the non-coring needle is essential to prevent air embolism.
PARAMEDIC - PREREQUISITES REQUIRED - ADULT ONLY

This procedure is only to be used by paramedics who are trained and credentialed to perform sepsis advanced care by the NH Bureau of EMS.

Systemic Inflammatory Response Syndrome (SIRS)
- Temperature < 96.8 °F or > 101°F
- Heart rate > 90 bpm
- Respiratory rate > 20 bpm

ACUTE ORGAN DYSFUNCTION:
- Altered mental status
- Mean Arterial Pressure (MAP) < 65 mmHg
- ETCO₂ < 25 mmHg
- Low UO or AKI
- Coagulopathy (INR > 1.5)
- Lactate > 2 mmol/L

SEPSIS
2 or more SIRS criteria AND one or more of the following:
- Infection known or suspected

SEVERE SEPSIS
- Meets SEPSIS criteria AND
- 1 of the acute organ dysfunction AND
- Lactate > 2 mmol/L

SEPTIC SHOCK
- Meets SEPSIS criteria with either a lactic acid > 4 mmol/L OR
- Persistent hypotension after 30 mL/kg fluid bolus OR
- Vasopressors needed for MAP > 65 mmHg.

INDICATION:
- Patient MUST meet Severe Sepsis or Septic Shock criteria.

CONTRAINDICATIONS:
- Known allergies to available antibiotics

PROCEDURE:
1. Draw labs:
 - Rainbow top draw (blue, purple, yellow and green)
 - Blood cultures X 2
2. Run iStat test and attach results
 - Lactate acid ______
 - PT/INR (optional) ______
3. Administer appropriate antibiotics per your Medical Resource Agreement.
 - If the patient meets Severe Sepsis or Septic Shock definitions.
4. For Septic Shock administer 0.9% NaCl for hypotension 30 mL/kg at a minimum rate of 125 mL/hr within the first 3 hours. If refractory to fluid challenge:
 - Norepinephrine infusion 1 – 30 microgram/minute (preferred) via pump, OR
 - Epinephrine infusion 2 – 10 micrograms/minute via pump.
5. For Severe Sepsis consider 4 above.
Prerequisite Required
This procedure is only to be used by Paramedics or AEMTs who are trained and credentialed to perform immunization by the NH Bureau of EMS and the NH Medical Control Board.

INDICATIONS:
Pre-hospital providers may be called upon to provide certain immunizations as necessary to assist state health officials in the event of a public health crisis, or under the written order of a physician.

Non-Patient Specific Orders:
A non-patient specific order authorizes Paramedic or AEMT to administer specified immunizations for a specified period of time to an entire group of persons such as school children, employees, patients of a nursing home, etc.

- Some examples of non-patient specific orders are:
 - Administer influenza vaccine 0.5 ml IM to all incoming freshmen students at X College who are eligible per protocol.
 - Administer influenza vaccine 0.5 ml IM to all employees of X organization who request it and who are eligible by protocol.
 - Administer influenza vaccine 0.5 ml IM to all X town residents who request it and who are eligible by protocol.
 - Administer hepatitis B series to all employees of X organization eligible per protocol.

Immunizations
Many of the immunizations listed in the Centers for Disease Control and Prevention (CDC) guidelines fall under this protocol. The list of authorized immunizations differs for adults and children. For the purposes of immunizations, adults are persons who are 18 years of age or older; children are persons under 18 years of age.

Immunizations for adults:
- Acellular pertussis
- Diphtheria
- Hepatitis A
- Hepatitis B
- Inactivated polio
- Influenza
- Measles
- Meningococcus
- Mumps
- Pneumococcus
- Rubella
- Smallpox vaccine
- Tetanus
- Varicella

Immunizations for children:
- Acellular pertussis
- Diphtheria
- Haemophilus influenza Type b (HiB)
- Hepatitis A
- Hepatitis B
- Inactivated polio
Influenza
Measles
Meningococcus
Mumps
Pneumococcal Conjugate
Rubella
Tetanus
Varicella

Note: The Medical Control Board may add immunizations in accordance with the recommendations of the Centers for Disease Control and Prevention and the New Hampshire Department of Health and Human Services.

Administration of Immunizations
The non-patient specific standing order and protocol must be authorized by a physician.

Epidemics
Any Paramedic or AEMT may administer immunizations that are authorized by a non-patient specific standing order and protocol as part of an immunization program when the immunization program is instituted as a result of an epidemic declared by public health officials.

Protocol requirements
- Ensure that the potential immunization recipient is assessed for contraindications to immunizations.
- Inform each potential immunization recipient of the potential side effects and adverse reactions, orally and in writing, prior to immunization, and inform each potential immunization recipient, in writing, of the appropriate course of action in the event of an untoward or adverse event. Vaccine Information Statements (VIS), developed by the Centers for Disease Control and prevention (CDC), United States Department of Health and Human Services are recommended for this use. http://www.cdc.gov/vaccines/pubs/vis/
- Before the immunization is administered, obtain consent for the immunization from the potential recipient.
- In cases of minors and persons incapable of personally consenting to immunization consent may be gained by informing the legally responsible person of the potential side effects and adverse reactions in writing and obtaining a written consent prior to administering the immunization.
- Provide to each legally responsible immunization recipient a signed certificate of immunization noting the recipient’s name, date of immunization, address, administering Paramedic or AEMT, immunizing agent, manufacturer and lot number.
- Have available on-site medications to treat anaphylaxis including, but not limited to, epinephrine and necessary needles and syringes.

Protocol Continues
Report all adverse immunization outcomes to the Vaccine Adverse Event Reporting System (VAERS) using the appropriate form from the Centers for Disease Control and Prevention, United States Department of Health and Human Services. https://vaers.hhs.gov/esub/index

Coordinate with program site managers to ensure that the record of all persons immunized includes: the non-patient specific standing order and protocol utilized, recipient’s name, date, address of immunization site, immunization, manufacturer and lot number of administered vaccine(s), and recommendations for future immunizations.

For the administration of the influenza vaccine to adults only it is acceptable to maintain a log of the names, addresses, and phone numbers of all adult patients immunized with the influenza vaccine under non-patient specific orders, in a dated file.

Coordinate with program site managers to ensure that a record is kept of all potential recipients, noting those who declined immunization.
Introduction
The purpose of this section is to reconcile the unique aspects of interfacility transfers with current NH EMS law, licensure, and acute care protocols. It is intended to provide flexibility, when possible, for individual agencies, institutions, and communities to meet their unique needs.

Interfacility Transfer
An interfacility transfer is defined as any EMS ambulance transport from one healthcare facility to another. Examples include hospital-to-hospital, hospital-to-rehabilitation, and hospital-to-long-term care. (Guide for interfacility patient Transfer, NHTSA, April 2006.)

Transferring Institution
Responsibility for patient transfer lies with the transferring physician/provider and must take into account the risks versus the benefits to the patient. Providing appropriate equipment, medications, and qualified staffing during transport is paramount to patient safety. These parameters should be based on the requirements of the patient at the time of transfer, and in reasonable anticipation of foreseeable complications, deterioration, and medical needs that might arise during transport.

Initiation of a transfer should be a carefully coordinated effort by the transferring and receiving physicians/providers, the transferring and receiving facilities, and the transferring unit and personnel. Time or advanced notification may be needed for the transferring EMS unit to reconfigure in order to meet the needs outlined here. The following provides guidelines for the selection of appropriate NH EMS personnel to provide interfacility transport of patients consistent with their current scope of licensure, protocols, and training. Staffing, Medical Control, documentation, medications, transfer protocols, and procedures are addressed.

Training Levels
Standard paramedic curriculum does not specifically address the care of the critically ill patient during an extended transport. NH requires specific training for paramedics to provide extended transport of critically ill or injured patients.

New Hampshire has multiple levels of interfacility transfer capabilities including: Paramedic Interfacility Transport (PIFT) and Critical Care Teams (CCT) as defined in the PIFT Administrative Manual. All paramedics who will be staffing an interfacility transfer must be credentialed at a minimum of PIFT level training. The PIFT level of training is intended to address the majority of interfacility transfer situations. However, some patients will have a level of acuity and/or complexity that requires a CCT level transport—either air or ground. The CCT level of credentialing requires greater training, medical oversight, and service support, and is intended for the more limited number of acute and complex interfacility transfers that occur; therefore, a limited number of paramedics will be credentialed to function at the CCT level. If that level of resource is not readily available it is an acceptable practice to supplement the PIFT crew with hospital staff that is qualified to provide the level of care the patient requires.

Interfacility transfers that are appropriate for EMT or AEMT level of care do not require additional levels of credentialing beyond training requirements defined in the NH EMS protocols and by Saf-C 5900.
NH EMS protocols enable PIFT paramedics to continue medications that are not within their routine scope of practice during an interfacility transport, including continuous infusions, repeat boluses, or blood products, providing that, prior to transporting the patient:

- Medication is started prior to leaving the transferring facility.
- The paramedic proactively obtains working knowledge and education of any such medications or products by reviewing current medication monographs (hardcopy or electronic), consulting with sending clinicians, medical directors, or clinical pharmacists, reviewing established practice policies (such as for blood products), or other standard clinical research means.

EMS providers must refuse to transport patients that have a level of acuity and/or medication regimen that they are not comfortable with, and work with the sending facility to acquire optimal staffing (such as sending nursing staff or requesting a CCT transport).

Minimum Staffing

The transferring physician/provider is responsible for determining the level of EMS provider and resources that are appropriate to meet the patient’s current and anticipated condition and needs. The following are examples only and do not comprise a comprehensive list.

Stable patient with no risk for deterioration

1 EMT provider and second licensed provider (minimum) driver.

- No IV infusions.
- Oxygen for stable patients permitted.
- Previously inserted Foley catheter, suprapubic tube, established feeding tube (NG, PEG, J-tube not connected to infusion or suction).
- Saline lock permitted.

Stable patients with low risk of deterioration

1 AEMT provider and second licensed provider driver.

- Any crystalloid infusion.
- IV infusion pump for non-pharmacologic agents.
- Patient-controlled analgesic (PCA) pump.
- Medications within the AEMT scope of practice.

Stable patients with medium risk of deterioration

PIFT credential required. This protocol is only to be used by paramedics and EMS units who have been trained and credentialed to perform PIFT-level transfers by the NH Bureau of EMS and the EMS Medical Control Board.

1 PIFT paramedic provider and second licensed provider (as driver or second provider).

- Transcutaneous pacing.
- BiPap
- Stable long-term ventilated patient to or from a medical facility, long term care facility, and/or home, provided the patient is stable and the transport is not of an acute nature, current ventilator settings may be maintained during transport.
- Acutely Intubated/mechanically ventilated patients on assist control or SIMV with non-complex settings. All intubated patients must have second provider in patient compartment. All intubated patients must be on a mechanical ventilator.
- Medical monitoring devices, procedures, and medication administration consistent with scope of practice and/or PIFT training.
Unstable or stable patients with high risk of deterioration

CCT required. Option 1 of this policy is only to be used by paramedics and EMS units who have been trained and credentialed to perform CCT-level transfers by the NH Bureau of EMS and the EMS Medical Control Board.

Option 1: CCT air or ground ambulance, OR
Option 2: 1 PIFT paramedic provider, 1 EMT driver and, at a minimum, 1 additional, (sending) hospital-based, qualified advanced health care provider (e.g., a critical care or emergency registered nurse, physician assistant, nurse practitioner, physician, CCT paramedic).

Examples:
- Multiple vasoactive medication drips.
- Uncorrected shock.
- Invasive monitoring.
- Balloon pump.
- Transvenous pacing.
- Intubated/ventilated patients with complex vent settings only (Pressure control and/or PEEP > 10 mmHg) require a respiratory care practitioner in the patient compartment with PIFT paramedic. This does not apply to long term vented patients as stated in “Stable patients with medium risk of deterioration”.
- Intubated/ventilated patients with complex vent settings (pressure control and/or PEEP > 10 mmHg) and another condition causing a high risk of deterioration also require a respiratory care practitioner in the patient compartment in addition to the above required hospital based provider.

As a measure of last resort, in cases where CCT providers are unavailable AND delay in transfer would have a significant negative impact on patient outcome, other transport arrangements may be initiated provided that:
1. The sending facility makes an exhaustive effort to send additional personnel.
2. The NH Bureau of EMS and Unit EMS Medical Director are notified within 48 hours and appropriate TEMSIS and IFT documentation is completed by the EMS Unit and the sending physician/institution.
3. All interventions are within the scope of practice of the transporting provider and vehicle.
4. EMS providers must refuse to transport patients that have a level of acuity and/or medication regimen that they are not comfortable with, and work with the sending facility to acquire optimal staffing.
Interfacility Transfers

Definitions

- **Unstable Patient**: A patient who cannot be stabilized at the transporting facility, who is deteriorating or likely to deteriorate. (From “Guide for Interfacility Patient Transfer,” NHTSA.)
- **Stable Patient**: Hemodynamically stable patient with a secure airway and who is **NOT** in acute distress.

Medical Control Responsibilities

According to EMTALA, patient care during transport until arrival at the receiving facility is the responsibility of the transferring physician/provider unless other arrangements are made.

Sometimes, as in certain air medical transport services or ground critical care units, the transport unit is functioning as an extension of a tertiary care center. It operates under that facility’s protocols, medical directorship, and on-line medical control.

In the prehospital environment the EMS system operates under protocols. In the interfacility transfer environment written transfer orders that are within the scope of the provider’s protocols and licensure are also required to be authored by the transferring physician/provider. The combination of protocols and transfer orders provide off-line medical control.

Transfer orders must be specific, appropriate to the patient being transferred, and reasonably anticipate potential complications en route. Transfer orders may reference the use of NH EMS protocols where they are applicable. If patients develop new signs and/or symptoms during transport, beyond their initial transfer diagnosis, providers may treat the new signs and/or symptoms according to protocols. Where transfer orders and NH EMS protocols are in conflict, transfer orders take precedence.

The transferring physician/provider should be immediately available to review transport orders and provide medical control communication via radio telephone during the transport. If the physician/provider is unavailable they must make other arrangements for review of the transfer orders with the transport crew.

PIFT and CCT Prerequisites and Oversight

It is the responsibility of the NH Bureau of EMS to monitor the quality of care delivered under this system and to set the standards for credentialing providers and units. PIFT and CCT transports shall only be conducted by those providers who have completed and maintain the approved training and who are credentialed by a unit that is approved by the NH Bureau of EMS.

The field of critical care interfacility transport is fluid and there are often questions related to scope of practice. There is a subcommittee established by the NH EMS Medical Control Board (MCB) to consider questions and make interim rulings on those questions until such a time as the MCB has the opportunity to consider and modify or adopt such rulings. These responses will be posted on the NHBEMS website.
Introduction

This prerequisite protocol enables an EMS Unit, a hospital and/or a Medicare-certified home health agency to form a collaboration for the purpose of providing community healthcare. A community that is experiencing a gap in healthcare coverage, as evidenced by a community needs assessment, may elect to utilize the capabilities of the EMS system in cooperation with a medical resource hospital and other healthcare professionals.

EMS Providers have traditionally functioned as a mobile healthcare unit and are a logical means of providing healthcare to the community as an extension of the primary care network, provided that a formal process has been followed, as outlined in this protocol. Only those EMS Units that have applied for, and have been approved by the NH BEMS under this prerequisite protocol, and only EMS providers who have met the requirements of this protocol may practice under these guidelines.

Definition of Mobile Integrated Healthcare

Mobile Integrated Healthcare (MIH) is the provision of healthcare using patient centered, mobile resources in the out-of-hospital environment.

In NH the MIH concept is envisioned to be an organized system of services, based on local need, which are provided by EMT’s, AEMT’s and Paramedics integrated into the local health care system, working with and in support of physicians, mid-level practitioners, home care agencies and other community health team colleagues, and overseen by emergency and primary care physicians. The purpose of the initiative is to address the unmet needs of individuals who are experiencing intermittent healthcare issues. It is not intended to address long-term medical or nursing case management.

General Project Description

Describe the community/communities to be served, the Unit’s base location(s) to be employed, the unmet community health need being addressed, the current community health team members being partnered with, and the methodology for addressing the need (including any enhancements of the EMS response system that will result).

Community Needs Analysis

The EMS Unit, hospital, and any other partners must provide a needs assessment, using the NH Needs Assessment Tool, that demonstrates the gap in healthcare coverage that the MIH program intends to fill.

Patient Interaction Plan

Describe the nature of anticipated patient care and diagnostic interactions. Specify how the patient community will be educated to have realistic expectations of the MIH provider and these interactions.

Staffing Plan

Define who will be providing the MIH services and how will these services fit within the normal EMS staffing of the Unit. Specify what type of schedule will these services be made available and how this staffing arrangement will be funded.
Training Plan

Describe what training will be provided to enable the providers to deliver the services described above. List the objectives and outcomes of the training plan. Document who is responsible for training oversight and coordination and their qualifications.

There must be a continuing education and credentialing process in place, with documentation of each EMS Provider’s participation in it. Such a process shall be approved by the EMS Unit’s Medical Director(s).

Quality Management Program and Data Collection

The EMS Unit shall conduct a quality management (QM) program specifically for the community healthcare program. The QM program will incorporate all the components of an EMS QM program as specified in Administrative Rule Saf-C 5923.

Describe what data demonstrates the need for this project, if any. Describe the data to be collected to demonstrate the impact of this project on the population served. Describe the data reporting plan and how the NH Bureau of EMS will be included in it.

Documentation

The EMS Provider may at any time, using their own discretion, decide to activate the 911 system for emergency treatment and transport to appropriate care.

Electronic patient care reports of all community healthcare patient encounters must be submitted to the requesting medical practice according to policies developed in coordination between the EMS Unit, MRH, collaborating home health agency and medical practice. Copies of these records shall be maintained by the EMS Unit, and be available for review by the NHBEMS.

The EMS Unit will participate in electronic data collection as required by the NHBEMS.

Medical Direction

Must establish a collaborative working relationship between the EMS Physician Medical Director or designee, who will be responsible for operations and continuous quality improvement, and a primary care provider providing medical direction for MIH services.
This procedure is only to be used by paramedics who are trained and credentialed to perform RSI. This protocol provides a brief outline of the scope of the RSI paramedic but is not comprehensive of the entire RSI procedure. For full RSI guidelines refer to the 2017 New Hampshire Prehospital RSI Manual. The guidelines in this manual are part of the RSI protocol and are incorporated in this protocol by reference.

Each RSI procedure must be performed in a controlled fashion and must involve careful planning and preparation. RSI requires at least one RSI credentialed paramedic and one credentialed RSI assistant or non-RSI paramedic. Intubation must be performed by the most appropriate provider as determined by the RSI paramedic leading the call. After intubation, the RSI paramedic must remain with the patient at all times unless there are extenuating circumstances (mass casualty, etc.) and ensure that adequate staff remain.

RSI may only be performed on adults (i.e., patients who are taller than a length based resuscitation tape).

Medications
The correct medication regimen should be chosen on a case-by-case basis by the RSI paramedic and care team. Medication options are listed here:

IBW = Ideal Body Weight (refer to chart)
ABW = Actual Body Weight

Premedication (if indicated)
- Fentanyl 1 - 3 mcg/kg IBW IV at least three minutes prior to induction

Induction
- Ketamine 2 mg/kg IBW IV or 4 mg/kg IBW IM (only if performing Delayed Sequence Intubation)
 - For elderly, shock, or risk of hypotension: 1 mg/kg IBW IV or 2 mg/kg IBW IM
 - OR
 - Etomidate 0.3 mg/kg IBW IV, maximum single dose 30 mg
 - For elderly, shock, or risk of hypotension: 0.15 mg/kg IBW IV

Paralysis
- Rocuronium 1 mg/kg IBW IV
 - OR
 - Succinylcholine 1.5 mg/kg ABW IV, maximum 150 mg

Succinylcholine Contraindications:
- Extensive recent burns or crush injuries > 24 hours old.
- Known or suspected hyperkalemia.
- History of malignant hyperthermia.
7.4 Rapid Sequence Intubation (RSI)

PARAMEDIC - PREREQUISITES REQUIRED - Continued

Post-Intubation Analgesia and Sedation
- Target RASS of -3 to -5
 - **Option 1:**
 - Ketamine 1 mg/kg IBW IV bolus followed by infusion via pump 2 – 5 mg/kg/hr. Initial bolus after intubation not needed if ketamine was used for induction.
 - If infusion not used: 1 mg/kg IBW IV every 5 - 15 minutes as needed
 - **Option 2:**
 - Fentanyl 50 - 100 mcg IV every 5-10 minutes as needed
 - Midazolam 2 - 5 mg IV bolus followed by infusion via pump 5 - 30 mg/hour
 - If infusion not used or if additional sedation is required: 2-5 mg IV every 5-10 minutes as needed OR
 - Lorazepam 1 - 2 mg every 15 minutes as needed (maximum total 10 mg)

Post-Intubation Paralysis (if indicated)
- Rocuronium 1 mg/kg IBW IV OR
- Vecuronium 0.1 mg/kg IBW IV

Push Dose Epinephrine
May be administered to patients who develop hemodynamic compromise during the peri-intubation period. This should be prepared PRIOR to performing RSI as peri-intubation hypotension is common.
1. Take a 10 mL normal saline flush and waste 1 mL (left with 9 mL)
2. Draw up 1 mL of epinephrine 0.1 mg/mL concentration from the cardiac arrest preloaded syringe into the flush and mix vigorously (now have 10 mcg/mL)
3. Administer 5 - 20 mcg (0.5 mL – 2.0 mL) IV/IO every 2 - 5 minutes as needed and reassess hemodynamics frequently
4. Evaluate blood pressure 1 - 2 minutes after dosing and frequently thereafter
5. Initiate vasopressor infusion as soon as practical

Skills
Delayed Sequence Intubation (DSI): May be used to facilitate preoxygenation and preparation for intubation in patients who cannot tolerate it otherwise.

Bougie Assisted Surgical Cricothyrotomy: This is the preferred surgical airway option to be used by the RSI paramedic. See Surgical Cricothyotomy Bougie Assisted 7.5.

DOCUMENTATION
- Each attempt at passing an ETT should be documented as a separate procedure of “Rapid Sequence Intubation”. The procedure should include the provider and time for each separate attempt. DO NOT also document a second procedure of “orotracheal intubation” as this will constitute double documentation of the intubation process. In this case, the procedure of RSI counts as the passing of the ETT itself.
- All medications administered should be documented, including the time and provider who administered them.
- Follow all other required documentation outlined in Procedure: Orotracheal Intubation 5.7.
Rapid Sequence Intubation (RSI)

Rapid Sequence Intubation Checklist
New Hampshire Bureau of EMS

Patient Preparation
- Preoxygenate
 - NC 15 lpm + NRB/CPAP/BVM
- Hemodynamics
 - IV fluids
 - Vasopressors
- Positioning
 - Ear to sternal notch
 - Ramp
 - Open collar
- Apneic Oxygenation
- Monitoring
 - SpO₂ - opposite of BP
 - EKG
 - BP - cycle q 5 mins
 - ETCO₂

Considerations
- Hemodynamics
 - Risk for hypotension?
 - Shock index
- Oxygenation
 - Risk for desaturation?
 - Set SpO₂ limit
- pH
 - Metabolic considerations?

Setup
- Laryngoscope(s)
- ETT(s) + syringe
- Bougie
- Stylette
- Suction(s)
- BVM w/PEEP
- ETCO₂
- Supraglottic
- Surgical

Post-intubation
- Confirm Placement
 - Waveform ETCO₂
 - Lung sounds
 - Epigastric sounds
- Secure ETT
- Fentanyl
- Sedation
- Consider Paralysis
- O2/NG Tube
- Sit Patient Up
 - If not contraindicated
- Reassess

Airway Procedure Algorithm

1st Laryngoscopy
- Optimize attempt

2nd Laryngoscopy
- With new strategy

Supraglottic airway

Surgical airway

Optimal Laryngoscopy
- Preoxygenation/ArO₂
- Ear to sternal notch/ramp
- Adequate sedation/paralysis
- Direct video laryngoscope (DVL)
- Insertion -> Epiglottoscope -> Valleculeoscope -> Laryngoscope
- Bougie
- External laryngeal manipulation
- Head elevation
- Jaw thrust
- Mac as a Miller

Premedication (when indicated)
- Fentanyl
 1-3 mcg/kg IBW

Induction
- Ketamine
 2 mg/kg IBW IV
 4 mg/kg IBW IM (DSI)
- Fentanyl
 0.3 mg/kg IBW, max 30 mg
 *reduce by ½ in shock

Paralysis
- Rocuronium
 1.0 mg/kg IBW
- Succinylcholine
 1.5 mg/kg ABW, max 150 mg
- Vecuronium
 0.1 mg/kg IBW
 (ongoing only)

Vasopressors
- Norepinephrine
 Infusion: 1-30 mcg/min
- Epinephrine
 Infusion: 2-10 mcg/min
 Push dose:
 - 1 mL of 0.1 mcg/mL in 9 mL saline and mix vigorously
 - Administer 5-20 mcg (0.5 - 2.0 mL) as needed

Post-intubation
- Ketamine
 Option 1
 Infusion: 2-5 mg/kg/hr OR 1 mg/kg q 5-15 mins
- Fentanyl
 Option 2
 50-100 mcg q 5-10 mins
 AND
 Midazolam
 Infusion: 5-30 mcg/hour OR 2-5 mcg as needed OR
 Lorazepam
 1-2 mcg q 15 mins

Ideal Body Weight

<table>
<thead>
<tr>
<th>Height</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>5'1"</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>5'2"</td>
<td>55</td>
<td>52</td>
</tr>
<tr>
<td>5'3"</td>
<td>57</td>
<td>54</td>
</tr>
<tr>
<td>5'4"</td>
<td>59</td>
<td>56</td>
</tr>
<tr>
<td>5'5"</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>5'6"</td>
<td>64</td>
<td>59</td>
</tr>
<tr>
<td>5'7"</td>
<td>66</td>
<td>61</td>
</tr>
<tr>
<td>5'8"</td>
<td>68</td>
<td>63</td>
</tr>
<tr>
<td>5'9"</td>
<td>71</td>
<td>64</td>
</tr>
<tr>
<td>5'10"</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>5'11"</td>
<td>75</td>
<td>68</td>
</tr>
<tr>
<td>6'</td>
<td>78</td>
<td>69</td>
</tr>
<tr>
<td>6'1"</td>
<td>80</td>
<td>71</td>
</tr>
<tr>
<td>6'2"</td>
<td>82</td>
<td>73</td>
</tr>
<tr>
<td>6'3"</td>
<td>85</td>
<td>75</td>
</tr>
<tr>
<td>6'4"</td>
<td>87</td>
<td>76</td>
</tr>
</tbody>
</table>

Delayed Sequence
1. Ketamine
2. Preoxygenate
3. Paralytic
4. Intubation

Shock Index = HR/SBP (>0.8 high risk for hypotension)

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified. 2017
PARAMEDIC - PREREQUISITE REQUIRED—ADULT

INDICATIONS:
Inability to adequately oxygenate and ventilate using less invasive methods

CONTRAINDICATIONS:
- Ability to oxygenate and ventilate using less invasive measures
- Age less than 12 years old

EQUIPMENT:
- Chlorhexidine
- #10 blade scalpel
- Bougie
- 6.0 mm endotracheal tube
- 10 ml Syringe
- BVM
- Quantitative ETCO₂

PROCEDURE:
1. Position the patient supine and extend the neck as needed to improve anatomic view.
2. Prep neck with Chlorhexidine
3. The provider performing the procedure should be on the side of the patient corresponding to their dominant hand (i.e., right handed provider to the right of the patient).
4. While resting dominant hand on patient’s sternum, make an approximately 3 cm vertical incision, 0.5 cm deep, through the skin and fascia. Incision should start just above the thyroid cartilage and extend below the cricoid ring. With finger, dissect tissue and locate the cricothyroid membrane.
5. Make approximately a 1.5 cm horizontal incision through the cricothyroid membrane.
6. With your finger, bluntly dilate the opening through the cricothyroid membrane.
7. Insert the bougie curved-tip first through the incision and angled towards the patient’s feet.
8. Advance the bougie into the trachea feeling for “clicks” of tracheal rings and until “hold up” when it cannot be advanced any further. This confirms tracheal position.
9. Advance a 6.0 mm endotracheal tube (ensure all air aspirated out of cuff) over the bougie and into the trachea.
10. Remove bougie while stabilizing ETT ensuring it does not become dislodged
11. Inflate the cuff with 5 – 10 ml of air.
12. Confirm appropriate proper placement by symmetrical chest-wall rise, auscultation of equal breath sounds over the chest and a lack of epigastric sounds with ventilations using bag-valve-mask, condensation in the ETT, and quantitative waveform capnography.
13. Secure the ETT.
14. Reassess tube placement frequently, especially after movement of the patient.
15. Ongoing monitoring of ETT placement and ventilation status using waveform capnography is required for all patients.
EMS personnel may request Air Medical Transport (AMT) when operational and/or clinical conditions are present that would benefit from decrease in time to definitive care and/or advanced clinical capabilities offered by the AMT team.

The use of AMT is determined by the prehospital provider with the highest medical level providing patient care. It should not be determined by police or bystanders.

AMT does not require approval of on-line Medical Control. However, if in doubt of the appropriateness of a patient for AMT, please contact Medical Control as soon as possible.

Operational Conditions

- When a patient meets the defined clinical criteria listed below and the ground transport time to the closest hospital capable of providing definitive care (e.g., Level I or 2 trauma hospital, PCI center, stroke center) exceeds the ETA of air medical transport, **OR**
- Patient location, weather, or road conditions preclude the use of ambulance, **OR**
- Multiple patients are present that will exceed the capabilities of local hospital and agencies.

Clinical Conditions

- Severe respiratory compromise with respiratory arrest or abnormal respiratory rate.
- Circulatory insufficiency: sustained systolic blood pressure <90mmHg in adults, age appropriate hypotension in children or other signs of shock.
- Neurologic compromise: total GCS ≤ 13, or motor component <5. If the patient’s neurologic status improves above these limits, consider canceling the helicopter and transporting to the local hospital.
- Trauma: All penetrating injuries to head, neck, torso, and extremities proximal to elbow or knee; chest wall instability or deformity (e.g., flail chest); two or more proximal long-bone fractures; crushed, degloved, mangled, or pulseless extremity; amputation proximal to wrist or ankle; pelvic fracture; open or depressed skull fracture; paralysis.
- Major burns with greater than 20% BSA and/or inhalation injury with risk of airway compromise.
- Electrocution injuries with loss of consciousness, arrhythmia, or any respiratory abnormality.
- STEMI: If 12-lead ECG indicates a STEMI (e.g., machine reads ***Acute MI Suspected*** and/or Paramedic interpretation), per your local STEMI plan.
- Stroke: 1 or more abnormal signs of the stroke scale; per local stroke plans.
- Critically ill children, including those with acute decompensation of chronic and/or special healthcare needs.

Additional Notes

- Patients with an uncontrolled airway or uncontrollable hemorrhage should be brought to the nearest hospital unless advanced life support (ALS) service (by ground or air) can intercept in a more timely fashion.
- AMT is **NOT** indicated for patients in cardiac arrest. Should the patient go into cardiac arrest after AMT request the AMT crew may be utilized for resuscitation and stabilization.
- AMT is **NOT** indicated for a contaminated patient until AFTER decontamination.
- AMT may be indicated in a wide range of conditions other than those listed above. In cases where the patient’s status is uncertain, consult with Medical Control and proceed as directed.
- Transfers from ground-ambulance to air-ambulance shall occur at the closest appropriate landing site, including a hospital heliport, an airport, or an unimproved landing site deemed safe per pilot discretion. In cases where a hospital heliport is used strictly as the ground-to-air ambulance transfer point, no transfer of care to the hospital is implied or should be assumed by hospital personnel, unless specifically requested by the EMS providers.
8.1 Baby Safe Haven

NH RSA 132-A and RSA PART He 6492 provides a mechanism for parents to surrender infants up to 7 days old at locations and facilities that are capable of temporarily safeguarding the infant. These locations and facilities include licensed hospitals and “Safe Havens” defined as houses of worship and emergency 911 responders including fire departments, police departments, ambulances, and rescue units. (A station that is not staffed is not an acceptable drop off location according to the law.) First Responders may also receive the infant at an agreed transfer location other than their stationhouse.

Procedure:
- Upon receiving physical custody of the infant, examine the child and provide any treatment necessary according to the appropriate clinical protocol(s).
- Complete a Patient Care Record and include the following:
 - Date and time infant was surrendered.
 - Infant’s gender and date of birth (if known).
 - Name of physician/midwife present at delivery (if known).
 - Any information willingly provided by the parent(s) such as their names, addresses, medical information and other family information.
 - Examination findings and treatment provided.
- Transport infant to the local hospital.

Reporting Requirements:
Both the Department for Children, Youth, and Families (DCYF) and local police must be notified within 24 hours:
- Call DCYF at 1-800-894-5533, available 24 hours/day; if out-of-state: 603-271-6556.

NOTE: Regardless of other agency’s involvement, EMS is mandated to notify DCYF.

Post Surrender Requests:
If the parent or other person contacts EMS after the infant is surrendered and wants the infant returned, instruct the person to contact DCYF immediately. The request will be referred to the family division of the circuit court.

EMS may bill the NH Department of Health and Human Services for all necessary medical or other costs incurred while assuming care of the infant within 90 days of the infant’s surrender.
Purpose: This policy provides guidance for providers concerning the triage, extrication, care and transport for bariatric patients. The New Hampshire EMS system strives to provide all patients, including bariatric patients, with timely and effective care that preserves the comfort, safety and dignity of the patients and ensures the safety of providers. At times, even a single patient can exceed the capacity of the immediately available resources. Like a multi-system trauma patient, a bariatric patient requires:
- Appropriate EMS resources to respond
- Appropriate protocols and equipment for the provision of care
- Specialized equipment for transfer to the ambulance and transport
- Careful selection of the appropriate destination hospital
- Pre-alerting of the ED to ensure adequate resources to manage the patient

On scene times may be significantly extended for bariatric patients.

For additional County Cache information and assistance in EMS bariatric planning, contact the NH Bureau of EMS at 603-223-4228.

Equipment
- Deployment of equipment and procedures shall be done under local or regional operating guidelines.

Definitions
A bariatric patient is a patient:
- Weight exceeds 400 pounds OR
- Weight, girth, body contours and/or co-morbidities challenge the ability of a two person EMS crew to effectively manage.

Dispatch
Bariatric Ambulance: Based on dispatch information or previous planning, consider requesting a bariatric transport ambulance to respond to the scene. The arrival onscene of a bariatric ambulance may require between 30 and 90 minutes, and should be requested as soon as it becomes clear that bariatric capabilities may be required. The State of New Hampshire has 10 bariatric equipment caches (1 per county) While standard ambulance stretchers can potentially handle some patients up to 750 pounds or more, the use of a specialized bariatric stretcher increases the ability to provide effective care, is more comfortable for the patient and enhances provider safety.

Additional Manpower: Consider requesting additional responders. In general, bariatric patients should be moved with a minimum of personnel. Larger bariatric patients may require additional personnel to participate in moving the patient. For significant extrications, consider designating a Safety Officer to oversee the safety of the operation in conjunction with Incident Command. It may be necessary to remove doors, walls or windows to carry out a safe extrication. The priorities are similar to extrication from a vehicle, although fixed property repair costs might be higher.

Paramedic: Consider requesting a paramedic. Even BLS bariatric patients present unique treatment challenges which may benefit from a higher level of care.

Medical Care
Medical care must take into account the unique challenges presented by the bariatric patient as well as the likelihood of extended on-scene times. Providers should use appropriately sized equipment to the extent it is available or can be readily obtained. For example, an appropriately sized blood pressure cuff will need to be used and intramuscular injection will be given with a longer needle.

If there are significant barriers to removing the patient from the structure in a timely manner (long narrow stairs, patient in the attic, etc.), there may be situations where EMS will provide extended care to the patient at the scene. In such cases, consult Medical Control and consider use of the extended care protocols.
Transfer to Ambulance
Specialized equipment will be needed to transfer the patient safely from the scene to the ambulance stretcher for transport. If a bariatric equipment cache is utilized, both the bariatric ambulance and cache equipment needs to be dispatched. Many services utilize large transfer flats for moving bariatric patients. Be sure before you use any patient transfer device that you understand the procedure for using it safely and that you know the weight limits of the device.

Hospital Destination
Ensure that you select a destination hospital that has the capabilities to care for your patient. Bariatric patients may require specialized hospital stretchers, CT scanners, catheterization laboratory equipment, operating room equipment, etc. It may be appropriate to bypass a local hospital to take the patient to a facility with the capabilities to properly care for the patient. This may even be appropriate in the case of life threatening emergencies if the closer emergency department does not have needed equipment. Pre-notification serves both to ensure that the hospital is capable of caring for the patient and allows hospital staff time for adequate preparation. Communication with the hospital shall be in a professional manner. Respect for the patient’s privacy and feelings will match the respect for all EMS patients.

Transport to the Hospital
A bariatric stretcher should be used to transport the patient to the hospital and equipment cache transfer devices may be utilized to facilitate transfer of the patient to the hospital stretcher. Be alert to ensure that the stretcher is adequately secured in the patient compartment. Transfer flats or other specialized transfer equipment may be left in place to facilitate transfer of the patient to the hospital stretcher.

PEARLS
- It may be difficult to establish IV and IO access. Consider intramuscular or intranasal as alternatives for some medications. For IM, ensure that the needle used is sufficiently long.
- Weight-based calculations may yield inappropriately large doses in obese patients. Consult with medical control when in doubt.
- Bariatric patients often have decreased functional residual capacity, and are at risk of rapid desaturation. Extremely obese individuals require more oxygen than non-obese individuals due to their diminished lung capacity. Pulse oximetry may not be reliable due to poor circulation. Even patients without respiratory distress may not tolerate the supine position.
- Bariatric patients may present with severe airway challenges. Carefully plan your approach to the airway, and be prepared with backup airway plans.
- If the patient has had recent bariatric surgery, possible complications may include anemia, dehydration, leakage, ulcers, localized infection, sepsis, etc.
EMS providers transporting status I, II, or III patients (see Status Determination 8.12) should advise the receiving hospital, in a timely manner, of patients en route to that Emergency Department (except in Mass Casualty Incidents (MCI) during which routine communications cease).

An EMS provider may establish contact with a Medical Control physician via VHF radio on one of the assigned medical frequencies, via telephone direct to each Department’s recorded EMS line, or via telephone patch through the Resource Coordination Center. If a Medical Control physician is needed for consultation, request this before giving patient information. It is recommended that all medical communications be recorded.

VHF Medical Frequencies
- Initiate call to the appropriate hospital and identify:
 - Destination hospital.
 - Ambulance unit calling.
 - Status of the patient.

Telephone
- To contact the destination hospital via telephone, use of a direct-recorded line to the Emergency Department is recommended.
- Request Medical Control, if needed, give the name of the patient, his or her age, status, and complaint.

Upon establishing voice communication with the destination hospital/medical control physician (if needed), present the following information in a concise and clear manner:
- Emergency response unit and level of care: Paramedic/AEMT/Basic, with ETA.
- Patient’s age, sex, and status level.
- Patient’s chief complaint.
- Patient’s present medical condition.
- Patient’s vital signs, including level of consciousness.
- Patient’s physical signs of illness or injury.
- Patient’s electrocardiogram rhythm, if indicated.
- Patient’s relevant medical history.
- Prehospital diagnostic tests performed/results and treatment rendered/results.

Give a list of medications and allergies only if requested by the destination hospital, or if it is anticipated that a medication order would be given by Medical Control.
In case of a communications failure with Medical Control due to equipment (cell phone, landline, radio, IHERN) malfunction or incident location, the following will apply:

- EMS personnel may, within the limits of their license, perform necessary ALS procedures that under normal circumstances would require a direct physician order.

- These procedures shall be the minimum necessary to prevent the loss of life or the critical deterioration of a patient’s condition.

- All procedures performed under this order, and the conditions that created the communications failure, need to be thoroughly documented.

- Attempts must be made to establish contact with Medical Control as soon as possible.

- The EMS provider shall provide a written notification pertaining to the communications failure describing the events, including the patient’s condition and treatment given, and referencing the EMS Incident Report. This report must be filed with the Medical Resource Hospital’s EMS Medical Director and/or Hospital EMS Coordinator within 48 hours of the event.
The word “minor” is a legal term for a person who has not yet reached his/her eighteenth birthday and is under the control of parent(s) or legal guardian. Emancipated minors may make their own determinations regarding medical care and include those minors who are married or members of the armed forces. A minor patient bears the burden of establishing, by legal documentation or otherwise, that he/she is emancipated. New Hampshire recognizes emancipation decrees issued by other states.

Implied Consent
EMS personnel may treat minors under the doctrine of implied consent when the minor’s parent or other authorized representative is unavailable to provide expressed consent. (RSA 153-A:18)

Obtaining Consent:
With the exception of life-threatening emergencies, personnel should attempt to contact the minor’s parent or legal guardian to obtain informed consent to treat and transport the child.

Refusal of Care
A parent or legal guardian or other authorized representative may refuse care for a minor and should understand the minor’s medical condition and potential consequences of refusing care. Carefully document all refusals.

- When a parent or legal guardian is unavailable, another authorized representative (e.g., daycare/school/camp official), who has been expressly authorized by the minor’s parent, may consent to health care treatment. Another adult family member (e.g., grandparent) having custody of the minor may also give consent, see Refusal of Care Protocol 8.15.
- EMS personnel may accept a telephonic refusal of care, provided that they have explained the consequences of refusing care; telephonic refusal of care should be carefully documented.

A minor may not refuse care. When a minor attempts to refuse care and/or transport to the hospital, EMS personnel should enlist the assistance of the police, including requesting that the police place the minor in protective custody. Minors should be restrained only as a last resort.

Special Circumstances
A minor parent who has not yet reached his/her eighteenth birthday may consent to or refuse care on behalf of his or her minor children, provided that the minor parent has the capacity to understand the nature of the treatment and the possible consequences of consenting to or refusing care.

A minor may consent without parental permission for the following care:
- Treatment for sexually transmitted diseases at age 14 and older (RSA 141-C:18).
- Treatment for drug and alcohol abuse at age 12 and older (RSA 318-B:12-a).
8.6 Continuity of Care

- EMS providers responding to a 911 emergency may encounter patients with pre-existing medical devices (e.g., ventilator) or pre-established medication infusions (e.g., antibiotics) that are outside of NH EMS Protocols and beyond the EMS provider’s scope of practice. The medical emergency may be unrelated to the pre-existing medical care (e.g., chest pain in a patient receiving an infusion) or may relate to the pre-existing care (e.g., problems with a ventilator supporting a patient’s breathing).

- Pre-existing medical care may include ventilators, CPAP, BiPAP, ventricular assist devices (VADs), continuous or intermittent IV medication infusions (analgesics, antibiotics, chemotherapeutic agents, vasopressors, cardiac drugs), and nontraditional out-of-hospital drug infusion routes (subcutaneous infusaports, central venous access lines, direct subcutaneous infusions, self-contained implanted pumps). The type of pre-existing care potentially encountered by EMS providers is extensive.

- The device or medication administration may be supported or maintained by the patient or the patient’s caregiver.

<table>
<thead>
<tr>
<th>EMT/ADVANCED EMT STANDING ORDERS – ADULT & PEDIATRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Routine Patient Care</td>
</tr>
<tr>
<td>- Consider early consultation with on-line medical control</td>
</tr>
<tr>
<td>- If the device or infusion is functioning properly and is maintained by an alert/oriented patient (or caregiver), transport the patient with the device or infusion in place and operating normally.</td>
</tr>
<tr>
<td>- If the device or infusion is not functioning properly or may be the cause of the medical emergency, the provider should utilize all appropriate and available resources:</td>
</tr>
<tr>
<td>- The patient/family/caregivers</td>
</tr>
<tr>
<td>- Specialty resources available via telephone (e.g., LVAD Coordinator, hospice nurse or physician), computer, smartphone or telemedicine device or application.</td>
</tr>
<tr>
<td>- Product literature for the device or infusion (paper or digital)</td>
</tr>
<tr>
<td>EMTs should not continue the administration of a newly initiated, i.e., not pre-existing medication that is outside their scope of practice.</td>
</tr>
<tr>
<td>- Consider requesting that any healthcare providers or other trained personnel on scene who are involved in the patient’s pre-existing care (e.g., nurse or physician) accompany the patient and the ambulance during transport to support the device or infusion.</td>
</tr>
<tr>
<td>- Request paramedic intercept for any medication outside the EMT or AEMT formulary.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMEDIC STANDING ORDERS – ADULT & PEDIATRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Any treatment initiated recently or acutely by other healthcare providers (e.g., urgent care) may be continued. Collaboration between sending providers, EMS, and medical control may be necessary.</td>
</tr>
</tbody>
</table>

EMS providers are not required to continue treatments which they believe are harmful to the patient or caregivers, (e.g. chemotherapy agents). If an EMS provider is not comfortable with a pre-existing treatment they should seek additional resources or discontinue treatment.
If you have been dispatched to a possible crime scene, including motor vehicle incidents, or if you believe a crime has been committed, immediately contact law enforcement.

Protect yourself and other EMS personnel. You will not be held liable for failing to act if a scene is not safe to enter. Once a crime scene is deemed safe by law enforcement, initiate patient contact and medical care if necessary.

- Have all EMS providers use the same path of entry and exit, if feasible.
- Do not walk through fluids.
- Do not touch or move anything at a crime scene unless it is necessary to do so for patient care (notify law enforcement prior to moving so if possible).
- Observe and document original location of items moved by crew.
- When removing patient clothing, leave it intact as much as possible.
 - Do not cut through clothing holes made by gunshot or stabbing.
- If you remove any items from the scene, such as impaled objects or medication bottles, document your actions and advise a law enforcement official.
- Do not sacrifice patient care to preserve evidence.
- Consider requesting a law enforcement officer to accompany the patient in the ambulance to the hospital.
- Document statements made by the patient or bystanders on the EMS patient care report.
 - Comments made by a patient or bystanders should be denoted in quotation marks.
- Inform staff at the receiving hospital that this is a "crime scene" patient.
- If the patient is obviously dead consistent with Resuscitation Initiation and Termination Policy, notify law enforcement of decision not to initiate resuscitation/patient care.
- At motor vehicle incidents, preserve the scene by not driving over debris, not moving debris and parking away from tire marks, if feasible.
Recognized DNR Options in New Hampshire

1. The following are the only recognized DNR options in New Hampshire:
 “P-DNR” (portable DNR) order: statewide recognized document of any color and/or a “DNR” (Portable DNR) wallet card signed by a physician or Advanced Practiced Registered Nurse (APRN).
2. Medical orders form documenting the patient’s name and signed by a physician or APRN and that clearly documents the DNR order.
3. DNR bracelet or necklace worn by a patient, inscribed with the patient’s name, date of birth (in numerical form), and “NH DNR” or “NH Do not resuscitate.”

Note: Under state law, a DNR bracelet or necklace may only be issued to patients who have a valid DNR order.

Neither a Living will nor a Durable Power of Attorney for Healthcare (DPOAH) form is a valid DNR order. Neither a patient’s spouse nor a healthcare agent under a DPOAH may direct EMS providers to withhold resuscitation in the absence of a valid DNR Order.

When a written DNR order is not available but the patient has a DPOAH and the patient’s healthcare agent requests that resuscitation be withheld, contact online Medical Control for guidance.

For patients present or residing In a healthcare facility, the following is also acceptable
A DNR order written by a physician or APRN at the nursing home, hospital, or other healthcare facility issued in accordance with the healthcare facility’s policies and procedures.

For Patients Being Transferred
All forms of DNR identified above remain valid during a transfer from one healthcare facility to another.

DNR Orders from Other States
EMS providers should honor any DNR order that is substantially similar to the NH statutory form. (see NH form below) Medical orders from other states must be signed by a physician or APRN that clearly documents the DNR order.

Revocation of a DNR Order
The following are the only recognized methods for revoking a DNR order:

Patients residing at home
• A patient residing at home may revoke a DNR order by destroying the DNR order and removing a DNR bracelet or necklace.
• If the patient lacks the capacity to make health care decisions, the patient’s healthcare agent (under a DPOAH—see below) may revoke the DNR order by destroying the DNR order and removing any DNR bracelet or necklace.

Patients residing in a healthcare facility
• A patient in a healthcare facility may revoke his or her previous consent to a DNR order by making a written, oral, or other act of communication to the attending physician or APRN or other professional staff of the healthcare facility.
• For a patient who lacks the capacity to make health care decisions, the patient’s healthcare agent (under a DPOAH—see below) may revoke a DNR order by notifying the attending physician or APRN in writing or, if a witness over the age of 18 is present, orally.
Procedures not to be Performed
If there is a valid DNR order and the patient is in cardiac or respiratory arrest, or cardiac or respiratory arrest is imminent, EMS providers should observe the following guidelines:

- Do not perform chest compressions.
- Do not actively assist ventilations via BVM.
- Do not intubate or place advanced airway devices.
- Do not defibrillate.
- Do not administer resuscitation drugs to treat cardiac arrest or the rhythms identified below:
 - Ventricular fibrillation.
 - Pulseless ventricular tachycardia.
 - Pulseless electrical activity.
 - Asystole.

Procedures that may be performed
If the patient is not in imminent cardiac or respiratory arrest, all appropriate medical treatment for all injuries, pain, difficult or insufficient breathing, hemorrhage, and/or other medical conditions should be provided despite the presence of a DNR order. Competent patients (and healthcare agents) retain the right to refuse any treatments indicated.

EMS providers MAY perform any other measures, including comfort measures, for these patients, within their scope of practice per the usual treatment guidelines, including but not limited to:

- Oxygen therapy via nasal cannula, non-rebreather mask, and/or CPAP.
- Medications for treatment of pain, respiratory distress, dysrhythmias (except for those identified above).
- Intravenous fluid therapy for medication access and/or delivery.
- Mouth or airway suctioning.

NH Statutory DNR Form
Do Not Resuscitate Order.
As attending physician or APRN of [patient’s name here] and as a licensed physician or Advanced Practice Registered Nurse, I order that this person SHALL NOT BE Resuscitated in the event of cardiac or respiratory arrest.
This order has been discussed with [patient’s name here] (or, if applicable, with his/her agent,) [name of DPOAH], who has given consent as evidenced by his/her signature below.

Attending physician or APRN name:__
Address: ___
Patient signature:___
Address: ___
Agent signature (if applicable):__
Address: ___
Do No Resuscitate (DNR) Orders, Provider Orders for Life Sustaining Treatment (POLST) and Advanced Directives

Policy 8.8

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.

Durable Power of Attorney for Healthcare

Under a Durable Power of Attorney for Healthcare, a patient may designate another person—a healthcare agent—to make health care decisions for themselves.

- Before a healthcare agent may make decisions on behalf of the patient, the patient’s attending physician or APRN must certify in writing that the patient lacks capacity (this certification is filed within the patient’s medical record).
- A patient who, in the clinical judgment of the EMS provider, retains the capacity to make health care decisions, shall direct his or her health care, even where a healthcare agent has been appointed. That is, EMS providers shall follow the wishes of the patient rather than the healthcare agent unless the patient lacks the capacity to make health care decisions.
- The healthcare agent must make an informed decision. It is generally advisable for EMS providers to perform at least a preliminary assessment and inform the healthcare agent of the options for caring for the patient.

Note: in the absence of a valid DNR order, a healthcare agent does not have the authority to direct prehospital providers to withhold resuscitation in the event of a cardiac arrest. When a written DNR order is not available and a DPOAH is present and requests that resuscitation be withheld, contact online Medical Control for guidance.

Living Will

A Living Will is intended to address patients who have been admitted to a healthcare facility. Living Wills rarely, if ever, have application in the prehospital environment.

POLST (Provider Orders for Life-Sustaining Treatment)

Section A

The POLST constitutes a DNR if it states ‘This will constitute a DNR Order, and no separate DNR Order will be required.’ Otherwise, if the patient has indicated they do not want resuscitation but does not have a separate valid DNR order, contact Medical Control for guidance.

Section B

When confronted with a seriously ill patient who has a POLST form (yellow form), and is not in cardiac arrest: see POLST Appendix A5

- If “Full Treatment” box is checked: Use all appropriate measures to stabilize/resuscitate patient.
- If “Selective Interventions” box is checked: The maximum respiratory interventions are non-rebreather mask, CPAP, and suctioning. All appropriate IV medications may be utilized. No electrical therapies are to be provided.
- If “Comfort-focused Care” box is checked: Limit respiratory interventions to non-rebreather mask, suctioning and treatment of airway obstruction, as needed. Medications to relieve pain or discomfort may be utilized.

Note: Section C refers to IV therapy for hydration and nutrition. Advanced EMTs and Paramedics may start an IV for the purpose of medication administration outlined in Section B.

PEARLS:

- Your decision to withhold resuscitation is protected under the New Hampshire DNR law as long as it is based on the good faith belief that you have been presented with a valid DNR order or DNR jewelry.
Hospice

This protocol is specific to those patients enrolled in Hospice. Treatment should be based on consultation with their Hospice team.

Introduction

The treatment goals of hospice patients differ significantly from those of other patients. Maintaining patient dignity and quality of life, rather than treating medical conditions, is the objective. If a specific cause of discomfort is identified (e.g., bronchospasm), traditional EMS treatment may be appropriate depending on the invasiveness of the therapy and the patient’s preferences. Hospice patients generally wish to remain at home and transport to the hospital should be the exception.

If the patient is unable to make medical decisions and the hospice team cannot be contacted, determine the patient’s wishes and contact Medical Control.

EMS providers should avoid the following interventions:

- Sirens, lights or aggressive interventions with family or caregivers.
- IV therapy (except where other forms of medication administration are not possible).
- Cardiac resuscitation: CPR, resuscitation medications, BVM ventilations.
- Cardiac pacing, cardioversion, and defibrillation.
- Hospice patients should not be transported to the hospital except where transport is specifically requested by the patient or his healthcare agent or surrogate, and preferably only after consultation with the hospice team and exhaustion of other treatment pathways that do not require transport to the hospital.
- Many hospice patients will have a hospice comfort kit that contains medications that patient’s caregivers are instructed to use to treat commonly encountered medical issues.

EMT/ADVANCED EMT STANDING ORDERS

- Routine Patient Care.
- Contact the hospice team (preferred) or Medical Control to coordinate care and determine administration of hospice kit medications.
- Consider paramedic response for medication administration.
- Breakthrough Pain: Suggest administration of breakthrough pain medication by patients / families. For pain of sudden onset, seek to determine and ameliorate or treat the underlying cause (e.g., pathological fracture).
- Anxiety: Consider potential causes for patient’s anxiety, such as increased pain and shortness of breath.
- Dyspnea: Administer oxygen via nasal cannula to relieve shortness of breath and achieve a respiration rate of < 20. Use a fan to blow air directly at the patient’s face.
- Constipation: Suggest administration of constipation medication by patient/family.
- Nausea/Vomiting: Suggest administration of nausea medication by patient/family.
- Terminal Secretions: Reassure family that noisy breathing is generally not distressing to the patient. Suggest administration of medication by patients/families.
- Terminal Dehydration: Moisten lips with petroleum jelly; use artificial saliva/mouth sponges and ice chips.
- Confusion/Delirium: Speak slowly and calmly to the person. Remind the patient of where they are, and who you are. Avoid contradicting the patient’s statements. Ensure a patient’s hearing aid and glasses are available. Limit activity/noise in the room.
PARAMEDIC STANDING ORDERS

Consider following the written orders for medications in hospice kit. As an adjunct to the hospice kit medication consider:

Breakthrough Pain:
- See Pain Protocol 2.15 (All IV formulated opiates may be given PO for hospice patients.)

Anxiety:
- Midazolam: 2.5 mg IN, repeat every 10 - 15 minutes as needed to a maximum of 6mg
- Lorazepam: 0.25 - 2 mg PO or SL.

Dyspnea:
- Morphine or other opiate, dosing per Pain Protocol 2.15, maintaining respiratory rate above 8 bpm.
- Bronchospasm: See Asthma/COPD 2.3, subject to patient’s goals.
- Heart Failure: See Congestive Heart Failure Protocol 3.3, subject to patient’s goals.

Nausea / Vomiting:
- See Nausea/Vomiting Protocol 2.11

PEARLS

- Breakthrough Pain assessment and management is important in patients with advanced disease as they may have a high burden of pain, be opiate tolerant, and already be receiving high doses of opioids.
- Anxiety ranges from mild to severe, is common in patients nearing death, and should be treated promptly.
- Terminal Secretions are noisy, gurgling respirations caused by secretions accumulating in the lungs or oropharynx.
- Terminal Dyspnea is exhibited by patients that are expected to die within hours to days. Individuals experiencing dyspnea often experience heightened anxiety.
- Constipation is a frequent cause of nausea and vomiting. Opioid-related constipation is dose-related, and patients do not develop tolerance to this side effect. Surgical treatment is often not appropriate.
- Nausea / Vomiting can be extremely debilitating symptoms at the end of life. Effective control of nausea can be achieved in most patients.
- Fever and Infection treatment should be guided by an understanding of where the patient is in the dying trajectory and goals of care. Overwhelming sepsis may be a sign of active death not to be reversed.
- Delirium is common at end of life and is often caused by a combination of medications, dehydration, infections or hypoxia. It is distressing to families. It often heralds the end of life and may require active sedation.
Blood Borne Pathogens
Assume that all bodily fluids and tissues are potentially infectious with pathogens and must protect themselves accordingly by use of appropriate Body Substance Isolation (BSI) and approved procedures.

Transmission of pathogens has been shown to occur when infected blood or Other Potentially Infectious Materials (OPIM) enter another individual’s body through skin, mucous membrane, or parenteral contact.

Screen symptomatic patients for out of country travel within the past 21 days or close contact with another symptomatic individual who has recently traveled out of the country. If possible, determine where patient or contacts have recently traveled. Provide early notification to receiving hospital.

Body Substance Isolation (BSI) Procedures.

- BSI procedures include using protective barriers (such as gloves, masks, goggles, etc.), thorough hand washing, and proper use and disposal of needles and other sharp instruments.
- Centers for Disease Control and Prevention Guidelines for hand hygiene include:
 - When hands are visibly dirty, contaminated, or soiled, wash with non-antimicrobial or antimicrobial soap and water.
 - If hands are not visibly soiled, use an alcohol-based hand sanitizer for routinely decontaminating hands.
- Personnel with any open wounds should refrain from all direct patient care and from handling patient-care equipment, unless they can ensure complete isolation of these lesions and protection against seepage.
- Personnel who are potentially at risk of coming into contact with blood or OPIM are encouraged to obtain appropriate vaccines to decrease the likelihood of transmission.

Body Substance Exposure - Procedures and Considerations

- Personnel with blood borne pathogen exposure should immediately flush exposed area or wash with an approved solution. At a minimum, use warm water and soap.
- If skin integrity is broken, the area cover area with a sterile dressing.
Airborne Pathogens

Assume that all patients who present with respiratory distress, cough, fever, or rash are potentially infectious with airborne pathogens and must protect themselves accordingly by use of appropriate Airborne Personal Protective Equipment (APPE), Body Substance Isolation (BSI), and approved procedures.

Screen symptomatic patients for out of country travel within the past 21 days, or close contact with another symptomatic individual who has recently traveled out of the country. If possible, determine where patient or contacts have recently traveled. Provide early notification to receiving hospital.

Airborne Personal Protective Equipment (APPE)

- Preferred APPE for EMS personnel is an N95 mask, to be worn whenever patient is suspected of having any communicable respiratory disease.
- N95 mask should be properly sized for each individual provider, having been previously determined through an annual fit-test procedure.
- A surgical mask should also be placed on suspect patients, if tolerated. If oxygen therapy is indicated, a surgical mask should be placed over the oxygen mask to block pathogen release. Close monitoring of the patient's respiratory status and effort will be required.

Airborne Procedures and Considerations

- Provide early notification to receiving hospital so hospital may enact its respective airborne pathogen procedures.
- Limit number of personnel in contact with suspected patients to reduce potential exposure to others.
- Limit procedures that may result in the spread of suspected pathogen, (e.g., nebulizer treatments), if feasible.
- Utilize additional HEPA filtration on equipment, (e.g., BVM or suction), if available.
- Exchange of fresh air into the patient compartment is recommended during transport.
Enteric Pathogens

- Emergency medical services personnel should assume that patients who present with gastrointestinal illnesses accompanied by nausea, vomiting and/or diarrhea are potentially infectious with enteric pathogens and must protect themselves accordingly by use of appropriate contact and droplet precautions and approved procedures.
- Screen symptomatic patients for recent antibiotic use or contact with others who have had Closteria Difficile or Noro Virus. Provide early notification to receiving hospital.

Decontamination and Follow-up

- In addition to accepted procedures for cleaning and disinfecting surfaces and equipment with approved solutions and for the proper disposal of contaminated items, the use of fresh air ventilation should be incorporated (e.g., open all doors and windows to allow fresh air after arrival at the hospital).
- In the case of suspected enteric pathogen contamination, personnel should clean all areas of patient contact with cleaners that are effective against E. coli, Noro Virus or C. Difficile. This should be clearly stated on the cleaner label, as most products do NOT effectively kill the pathogen. See The Centers for Disease Control and Preventions (Guideline for Disinfection and Sterilization in Health Care Facilities) If the patient was actively vomiting during transport to the hospital, surfaces in close proximity to the patient should also be cleaned.
- All personnel in contact with the patient should wash their hands thoroughly with warm water and an approved hand-cleansing solution. When soap and water are not immediately available, a hand sanitizer containing 60% isopropyl alcohol is recommended as an interim step until thorough hand washing is possible.
- Contaminated clothing should not be brought home by the employee for laundering, but laundered in a department provided washer or by other uniform cleaning arrangements.
- Ambulances equipped with airborne pathogen filtration systems should be cleaned and maintained in accordance with the manufacturer’s guidelines.

As soon as possible following any suspected exposures, EMS provider should complete all appropriate documentation as identified in service department’s specific policies, including Worker Compensation Notice of Accidental Injury or Occupational Disease 8aWCA form and the Emergency Response/Public Safety Worker Incident Report Form.
The medical care provided at the scene is the responsibility of the highest level of EMS provider who has responded by usual dispatch systems to that scene. Passersby who stop to help, even though possibly more highly trained than the system providers, may NOT assume responsibility (except as outlined below) but may be allowed to help in care at the discretion of the lead EMS provider assuming they have proof of licensure.

When an EMS provider, under Medical Control (on- or off-line), arrives at the scene of an emergency, the provider acts as the agent of Medical Control, (i.e., the on-line physician is ultimately responsible).

Any health care provider (MD, PA, RN, nurse midwife, EMS provider, etc.) who is not an active member of the responding EMS unit or the unit’s medical director, and who is either at the scene at the time of the EMS unit’s arrival or arrives after an EMS unit has initiated care, and who desires to assume primary patient care, should be put in touch with the on-line Medical Control and:

- Continue to provide care during transport of the patient; OR
- Transfer patient care to another provider at the same licensing level for transport of the patient to a medical hospital/facility;
- Document all advanced care procedures performed while rendering care, which shall include an emergency care provider’s current license number assigned by the Division; AND
- Submit all documentation to the unit in charge of the incident.

Where a higher level provider offers to assist, but that assistance is declined by the lead responding agency, the higher level provider shall not have any responsibility or liability for the patient’s care.

See Saf-C 5922.01 (c)
Determination of the patient’s status should be based on the highest level of acuity during patient care.

Status I Critical
Patients with symptoms of a life-threatening illness or injury with a high probability of mortality (death) if immediate intervention is not begun to prevent further airway, respiratory, hemodynamic, and/or neurologic instability.

For Example:
- Cardiac arrest.
- Respiratory arrest.
- Patient unresponsive with abnormal vital signs.
- Severe and/or deteriorating respiratory condition.
- Pediatric non-responsive respiratory distress
- Decompensating Shock or Sepsis.
- Major trauma
- Uncontrolled bleeding.
- Status epilepticus.

Status II Emergent
Patients with symptoms of an illness or injury that may progress in severity or result in complications with a high probability for morbidity (increased illness or disability) if treatment is not begun quickly.

For Example:
- Moderate injury without shock or respiratory compromise.
- Major fractures without shock.
- Moderate dyspnea.
- Acute MI (STEMI Alerts/activation of cath lab if applicable).
- Stroke (Stroke Alerts/activation of stroke team if available).

Status III Lower Acuity
Patients with symptoms of an illness or injury that have a low probability of progression to more serious disease or development of complication.

For Example:
- Patient alert, vitals signs within normal limits, and with simple uncomplicated injuries or medical complaints.
- Soft tissue injuries including minor burns.
- Isolated extremity fractures and dislocations.
- Maxillofacial injuries without airway compromise.
- Asthma attack that has responded to bronchodilators.
- Status: post seizure.
- Psychological emergencies.

Status IV Non-Acute
EMS evaluation with no interventions provided

For Example:
- Scheduled medical transport, e.g., dialysis or return home
- Public assists
- Medical alarm with false activation
- Good intent calls

Notes of Clarification
- Should a patient deteriorate in status while en route to a hospital, the unit may divert to the nearest hospital after consultation with Medical Control and notification of both the hospital of original destination and the new destination hospital.
PATIENT TRANSPORT

NH RSA 265:107-a requires all children up to 57 inches to be properly restrained in a safety seat or harness when riding in a vehicle. Any child who fits on a length-based resuscitation tape is 57 inches or less in height. An ill or injured child must be restrained in a manner that minimizes injury in an ambulance crash. The best location for transporting a pediatric patient is secured directly to the ambulance cot. Never allow anyone to hold an infant or child on the stretcher for transport.

TYPES OF RESTRAINTS:

1. **Convertible car seat with two belt paths (front and back) with four points for belt attachment to the cot** is considered best practice for pediatric patients who can tolerate a semi-upright position.
 - Position safety seat on cot facing foot-end with backrest elevated to meet back of child safety seat.
 - Secure safety seat with 2 pairs of belts at both forward and rear points of seat.
 - Place shoulder straps of the harness through slots just below child’s shoulders and fasten snugly to child.
 - Follow manufacturer’s guidelines regarding child’s weight.

 Note: Non-convertible safety seats cannot be secured safely to cot. If child’s personal safety seat is not a convertible seat, it cannot be used on the cot.

2. **Stretcher harness device with 5 point harness**
 Restraint device (marketed to EMS) with 5-point harness (examples: Ferno Pedi-Mate, SafeGuard Transport, ACR)
 - Attach securely to cot utilizing upper back strap behind cot and lower straps around cot’s frame.
 - 5-point harness must rest snugly against child. Secure belt at child’s shoulder level so no gaps exists above shoulders.
 - Adjust head portion of cot according to manufacturer’s recommendation.
 - Pedi-mate fits children weighing 10 – 40 lbs. SafeGuard Transport fits children weighing 22 – 100 lbs.

 Follow manufacturer’s guidelines regarding weight.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
3. **Car bed with both a front and rear belt path (example: Cosco Dream Ride SE)**
 - For infants who cannot tolerate a semi-upright position or who must lie flat.
 - Position car bed so infant lies perpendicular to cot, keeping infant’s head toward center of patient compartment.
 - Fully raise backrest and anchor car bed to cot with 2 belts, utilizing the 4 attachment sites supplied with car bed.
 - Only appropriate for infants from 5 – 20 lbs.

4. **Isolette/Incubator must be secured to ambulance according to manufacture’s guidelines.**
 - Secure infant using manufacturer’s restraint. (Five point harness restraint is preferred.)
 - Blankets or towels may be used for additional stabilization

NON-PATIENT TRANSPORT

Best practice is to transport well children in a vehicle other than the ambulance, whenever possible, for safety.

If no other vehicle is available and circumstances dictate that the ambulance must transport a well child, he/she may be transported in the following locations:

- Captain’s chair in patient compartment using a size appropriate integrated seat or a **convertible safety seat**.
- Passenger seat of the driver’s compartment if child is large enough (according to manufacturer’s guidelines) to ride forward-facing in a child safety seat or booster seat. Airbag should be turned off. If the air bag can be deactivated, an infant, restrained in a rear-facing infant seat, may be placed in the passenger seat of the driver’s compartment.

USE OF PATIENT’S CHILD SAFETY SEAT AFTER INVOLVEMENT IN MOTOR VEHICLE CRASH

The patient’s safety seat may be used to transport child to hospital after involvement in a minor crash if ALL of the following apply:

- It is a convertible seat with both front and rear belt paths.
- Visual inspection, including under movable seat padding, does not reveal cracks or deformation.
- Vehicle in which safety seat was installed was capable of being driven from the scene of the crash.
- Vehicle door nearest the child safety seat was undamaged.
- The air bags (if any) did not deploy.

MOTHER AND NEWBORN TRANSPORT

- Secure and transport mother on the cot.
- Transport newborn secured to the rear-facing provider seat / captain’s chair using a size-appropriate child restraint system. Either a convertible safety seat with a forward-facing belt path or an integrated child restraint system certified by the manufacturer to meet FMVSS No. 213 may be used to secure infant.
- **Do NOT** use a rear-facing only safety seat in the rear-facing provider seat / captain’s chair as this is dangerous and may lead to significant injuries.
Purpose
The purpose of this policy is to give EMS guidance for patients who are in police custody, restrained, and/or protective custody is required.

Protective Custody
Protective custody is a civil status in which an incapacitated person is detained by a peace officer for the purposes of:
(a) Assuring the safety of the individual or the public or both; and
(b) Assisting the individual to return to a functional condition.

- Patients with evidence of suicidal ideation who refuse care may be placed into protective custody under RSA 135C:28 III.
- Patients who present with an altered level of consciousness, diminished mental capacity, or evidence of impaired judgment from alcohol or drug use may be placed into protective custody under RSA 172 and 172:B3.
- If law enforcement refuses to place a patient into protective custody at the request of EMS, on-line medical control must be contacted and a law enforcement supervisor should be requested for further guidance.

Police Custody
- Police custody for this policy, shall mean a person under arrest.
- Patients who EMS believe require medical care should be transported to a medical facility. If police and EMS disagree about whether a patient in police custody requires transport to a medical facility for further assessment or treatment, on-line medical control must be contacted and a law enforcement supervisor should be requested for guidance.

EMS Initiated Restraints
For any patient potentially requiring restraints by EMS, see the Restraints Procedure 6.5.

Police Restraint Devices
Patients transported by EMS who have been restrained by law enforcement devices (e.g., handcuffs) should be accompanied, in the patient compartment, by a law enforcement officer who is capable of removing the device. If this is not feasible, the officer MUST follow directly behind the transporting ambulance to the receiving hospital.

Tasers® (Conductive Electrical Weapon)
Patients who have been subdued by a Taser device, see Tasers Procedure 6.6.

Pepper Spray
Patients who have been subdued by pepper spray, see Eye and Dental Protocol 4.2.

Excited Delirium
Excited/Agitated Delirium is characterized by extreme restlessness, irritability, and/or high fever. Patients exhibiting these signs are at high risk for sudden death, see Restraints Procedure 6.5.
PURPOSE:
Establish guidelines for the management and documentation of situations where patients refuse treatment or transportation.

Refusal of care
There are three components to a valid refusal of care. Absence of any of these components will most likely result in an invalid refusal. The three components are as follows:

1. Competence: In general, a patient who is an adult or a legally emancipated minor is considered legally competent to refuse care. A parent or legal guardian who is on-scene or available by phone, may refuse care on his or her minor children’s behalf.
2. Capacity: In order to refuse medical assistance a patient must have the capacity to understand the nature of his or her medical condition, the risks and benefits associated with the proposed treatment, and the risks associated with refusal of care.
3. Informed Refusal: A patient must be fully informed about his or her medical condition, the risks and benefits associated with the proposed treatment and the risks associated with refusing care.

Patients who meet criteria to allow self-determination shall be allowed to make decisions regarding their medical care, including refusal of evaluation, treatment, or transport. These criteria include:

1. Adults (≥ 18 years of age or a legally emancipated minor).
2. Orientation to person, place, time, and situation.
3. No evidence of altered level of consciousness resulting from head trauma, medical illness, intoxication, dementia, psychiatric illness or other causes.
4. No evidence of impaired judgment from alcohol or drug influence.
5. No language communication barriers. Reliable translation available (e.g., on scene interpreter, language line).
6. No evidence or admission of suicidal ideation resulting in any gesture or attempt at self harm. No verbal or written expression of suicidal ideation regardless of any apparent inability to complete a suicide.

EMS providers will make every reasonable effort to convince reluctant patients to access medical care at the emergency department via the EMS system before accepting a Refusal of Care.

Consider on-line medical control for all patients who present a threat to themselves, present with an altered level of consciousness or diminished mental capacity, or have history or examination findings consistent with a high-risk refusal.

The on-line medical control provider should be provided with all relevant information and may need to speak directly with the patient by radio or preferably a recorded landline. The physician should determine if protective custody is to be pursued in consultation with the Law Enforcement.
Refusal of Care

If the patient is intoxicated and in need of medical treatment or protective custody, and refuses care, police can take custody of the individual under NH RSA 172 and 172:B3.

Examples of high-risk refusals include but are not limited to:
1. Treated / resolved hypoglycemia.
2. Patient with obvious head trauma and taking anticoagulant medications.
3. Intoxicated patients.
4. Abnormal vital signs.
5. Treated / resolved narcotic overdose.
7. Patient / witness reports suicidal ideations.
8. Possible Brief Resolved Unexplained Event see BRUE Protocol 2.5.

Procedure
1. Clearly offer the patient both treatment and transportation to the hospital and document the offer in your Patient Care Report.
2. Perform an assessment of the patient’s mental capacity and, to the extent permitted by the patient, a physical exam including vital signs. Your assessment, or the patient’s refusal of care, must be fully documented in your Patient Care Report.
3. Explain to the patient the nature and severity of his/her illness or injury, the treatments being proposed, the risks and consequences of accepting or refusing treatment, and the potential alternatives. Fully document the explanation given to the patient in your patient care report.
4. A parent or legal guardian may refuse care for a minor or:
 - When a parent or legal guardian is not reasonably available, another adult family member (e.g., grandparent), or other authorized representative having custody of the minor, may refuse care.
 - EMS personnel may accept a telephonic refusal of care, provided that they have explained the consequences of refusing care; telephonic refusal of care should be carefully documented.
5. Prepare and explain the Refusal of Care form to the patient (or, in the case of a minor patient, the patient’s parent, legal guardian, or authorized representative).
6. The Refusal of Care form should be signed by the patient (or, in the case of a minor patient, by the minor patient’s parent, legal guardian, or authorized representative) at the time of the refusal. The form should also be dated and, where possible, signed by a witness, preferably a competent relative, friend, police officer, or impartial third person.
7. If on-line medical control was consulted for a refusal of care, obtain and document the provider’s name in the patient care report.
8. All patients in police custody retain the right to request transport. This should be coordinated with law enforcement.
9. If child or adult abuse and/or neglect is suspected and a refusal of care situation exists, the EMT provider must contact police immediately, see Victims of Violence 8.19.
WHEN NOT TO START

Resuscitation efforts should be withheld or discontinued under the following circumstances:

- **VALID DO NOT RESUSCITATE ORDER:** Refer to DNR, POLST & Advanced Directives Protocol 8.8.
- **SCENE SAFETY:** The physical environment is not safe for providers.
- **DEAD ON ARRIVAL (DOA):** A person is presumed dead on arrival when all five “Signs of Death” are present AND at least one associated “Factor of Death” is present.

Signs of Death (All five signs of death must be present)

- Unresponsiveness.
- Apnea.
- Absence of palpable pulses at carotid, radial, and femoral sites.
- Unresponsive pupils.
- Absence of heart sounds.

Factors of Death (At least one associated factor of death must be present)

- Damage or destruction of the body incompatible with life, such as:
 - Decapitation.
 - Decomposition.
 - Deforming brain injury.
 - Incineration or extensive full thickness burns.
- Lividity/Rigor mortis of any degree.
- Major blunt or penetrating trauma incompatible with life.

Patients with ventricular assist devices (VAD) should almost never be pronounced dead at the scene, see VAD Policy 8.20.

SUDDEN UNEXPLAINED INFANT DEATH SYNDROME (SUIDS).

- An infant <12 months who is apneic, asystolic (no heartbeat or umbilical cord pulse), and exhibiting lividity and/or rigor mortis should be presumed dead.
- For unexpected, unexplained infant death, record carbon monoxide level in room where infant was found unresponsive, if possible.

NEONATE:

- A neonate who is apneic, asystolic, and exhibits either neonatal maceration (softening or degeneration of the tissues after death in utero) or anencephaly (absence of a major portion of the brain, skull, and scalp) may be presumed dead.
- Contact Medical Control if gestational age is less than 20 weeks and neonate shows signs of obvious immaturity (e.g., translucent and gelatinous skin, lack of fingernails, fused eyelids).

NOTE: Infant and/or neonatal resuscitation and transport may be initiated in cases where the family does not accept the idea of nonintervention.
Resuscitation may be stopped under the following circumstances:

EMT/ADVANCED EMT STANDING ORDERS – ADULT & PEDIATRIC
- The physical environment becomes unsafe for providers.
- The exhaustion of EMS providers.
- The automatic external defibrillator has advised “no shock” for 20 minutes and Paramedic/hospital care is not available within 20 minutes (hypothermia is an exception) and the ETCO$_2$ is less than 20 mmHg (if available).
- Extrication is prolonged (>15 minutes) with no resuscitation possible during extrication (hypothermia is an exception).
- If directed to do so by Medical Control

PARAMEDIC STANDING ORDER – ADULT & PEDIATRIC
- Asystole and slow wide complex PEA
 - If there is no return of spontaneous circulation after 20 minutes in the absence of hypothermia and the ETCO$_2$ is less than 20 mmHg.
- Narrow complex PEA with a rate above 40 or refractory and recurrent ventricular fibrillation / ventricular tachycardia
 - Consider early expert consultation with Medical Control
 - Consider resuscitation for up to 60 minutes from the time of dispatch.
 - Termination efforts may be ceased before 60 minutes based on factors including but not limited to ETCO$_2$ less than 20 mmHg, age, co-morbidities, distance from, and resources available at the closest hospital.

- For narrow complex PEA with a rate above 40 or refractory and recurrent ventricular fibrillation / ventricular tachycardia, termination efforts may be ceased before 60 minutes based on factors including but not limited to ETCO$_2$ less than 20 mmHg, age, co-morbidities, distance from, and resources available at the closest hospital. Consider expert consultation with on-line medical control.
- EMS providers are not required to transport every victim of cardiac arrest to a hospital. Unless special circumstances are present, it is expected that most resuscitations will be performed on-scene until the return of spontaneous circulation or a decision to cease resuscitation efforts is made based on the criteria listed under “when to stop” (above). Transportation with continuing CPR may be justified if hypothermia is present or suspected. Current AHA guidelines state: “cessation of efforts in the out-of-hospital setting…should be standard practice.”

PEARLS:
- For patients that do not achieve return of spontaneous circulation on scene, termination of resuscitation should be considered before the patient is loaded into the ambulance for transport.
DETERMINING DEATH IN THE FIELD

When efforts to resuscitate are not initiated or are terminated under the above provisions, EMS providers shall:

- Document time of death.
- Notify law enforcement.
- Consider possibility of a crime scene and restrict access.
- Any decision to move the body must be made in collaboration with law enforcement and the medical examiner.
- Leave any resuscitation adjuncts such as advanced airway devices, IV/IO access devices, electrode pads, etc., in place.
- Inform family on scene of patient’s death and offer to contact family, friends, clergy, or other support systems.

The above requirements apply to situations in which law enforcement or the medical examiner may take jurisdiction. Law enforcement and the medical examiner are not required to take jurisdiction of hospice or other patients who are known to have been terminally ill from natural causes or congenital anomaly, and death was imminent and expected. Where law enforcement is not involved, EMS providers may provide appropriate assistance to families or other caregivers.

Documentation

- Complete a Patient Care Record (PCR) in all cases. If available, include ECG rhythm strips with the patient care report.
- Document special orders including DNR, on-line Medical Control, etc.
- MCI conditions may require a triage tag in addition to an abbreviated PCR.
- Record any special circumstances or events that might impact patient care or forensic issues.
Strangulation is defined as asphyxiation caused by closure of blood vessels and or air passageways of the neck due to external pressure. External pressure can be manual via a body part such as hands, arms, knees, etc., or can be by an object such as a belt, rope, etc.

Patients are at risk of delayed death due to internal swelling, anoxia, hematoma or structural damage that cannot be identified externally. Patients should be encouraged to seek medical care; if transported, communicate reported strangulation attempt to hospital staff.

Although often described as 'choking' by patients, it should be distinguished as strangulation when being documented by providers (as opposed to choking, i.e., foreign body obstruction). Include all information and observations regarding attempted strangulation in documentation provided to receiving hospital.

Assessment:

How was the patient strangled:
- Left, right, or both hands; forearm; knee or foot; ligature or smothered; other, describe

Was patient shaken, beaten or held against wall, ground:
- Quantify grip strength and level of pain using 1-10 scale; duration in min/sec.
- Prior incidents of strangulation, domestic violence, or threats?

Signs and symptoms:
- Petechiae on face, eyes/eyelids, nose, ears, head
- Deformity of or bleeding from nose, ears; bruising, swelling of mouth/lips
- Redness, scratches, abrasions, bruising under chin, on neck, shoulders, chest
- Ligature marks, swelling, fingernail impressions (offensive or defensive) on neck
- Missing hair, fracture, or swelling/bruising on head, signs of concussion
- Difficulty breathing or speaking; coughing, hoarse or raspy voice; drooling, difficulty or pain swallowing

Behavioral signs:
- Agitation, amnesia, hallucinations, dizziness, fainting, or combativeness due to hypoxia

Documentation and Reporting Responsibilities

Strangulation is a felony-level crime*. Per NH RSA 631:6, it must be reported to the police unless the patient age 18 or older refuses to have the information released.

Strangulation is also an indicator of increasing lethality in a violent relationship. Every effort should be made to connect patient with support services.

- 24-Hour Sexual Assault Crisis Line: 1-800-277-5570.
- Emergency shelter and transportation.
- Hospital and court accompaniment; legal advocacy
- Information about public assistance.

PEARLS:

- Patient's spouse/partner, caregiver or parent may be the perpetrator; their presence may hinder patient's disclosure of information.
- Providers' reactions can impact patient recovery and strengthen or hinder prosecution of the perpetrator. Non-judgmental and compassionate care and thorough documentation and preservation of evidence are essential.
8.18 Trauma Triage and Transport Decision

Measure Vital Signs and Level of Consciousness

<table>
<thead>
<tr>
<th>Measure</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glasgow Coma Scale</td>
<td>≤13</td>
</tr>
<tr>
<td>Systolic Blood Pressure</td>
<td><90 mmHg or signs of shock</td>
</tr>
<tr>
<td>Respiratory Rate</td>
<td><10 or >29 breaths per minute or need for ventilatory support (<20 in infants aged <1 year)</td>
</tr>
</tbody>
</table>

Assess Anatomy of Injury

- All penetrating injuries to head, neck, torso, and extremities proximal to elbow or knee
- Chest wall instability or deformity (e.g., flail chest)
- Two or more proximal long-bone fractures
- Crushed, degloved, mangled, or pulseless extremity
- Amputation proximal to wrist or ankle
- Pelvic fractures
- Open or depressed skull fracture
- Paralysis

Assess Mechanism of Injury and Evidence of High-Energy impact

- Falls
 - Adult: >20 feet (1 story is equal to 10 feet)
 - Pediatric: >10 feet or 2 to 3 times the height of the child.
- High-risk auto crash
 - Intrusion, including roof: >12 inches occupant site; >18 inches any site
 - Ejection (partial or complete) from automobile
 - Death in same passenger compartment
- Auto vs. pedestrian/bicyclist: thrown, run over, or with significant (>20 mph) impact
- Motorcycle crash >20 mph

Assess Special Patient or System Considerations

- Older Adults
 - Risk of injury/death increases after age 55 years
 - SBP <110 mmHg may represent shock after age 65
 - Low impact mechanisms (e.g., ground level falls) may result in severe injury
- Pediatric
 - Should be triaged preferentially to pediatric capable trauma centers
- Anticoagulants and bleeding disorders
 - Patients with head injury are at high risk for rapid deterioration
- Burns (See Burn Protocol)
 - Without other trauma mechanism: triage to burn facility
 - With trauma mechanism: triage to trauma center
- Pregnancy >20 weeks (See Obstetric Protocol)
- EMS Provider judgment

Transport to closest appropriate acute care hospital

- If feasible, transport directly to a Level I or II Trauma Center by ground or air.
- If above is not feasible and air transport is unavailable, transport to nearest Trauma Center (preferred) or acute care hospital with emergency department and consider requesting ALS intercept.
- For a child <15 years of age, direct transport to a Level 1 or 2 Pediatric Trauma Center is desired.
- Contact destination hospital and activate the trauma system in accordance with local guidelines.

Consider transport to nearest Trauma Center

Reference: CDC 2011 Guidelines for Field Triage of Injured Patients and NH Trauma Plan

For more information on Trauma Center assignments and hospital services click on this [LINK](https://www.cdc.gov/trauma/fieldtriage/).
Scene Safety
Maintain heightened awareness: family members, caregivers or bystanders may exhibit anger or may be the perpetrator. If you are threatened or suspect potential violence, consider withdrawing and notifying police.

Assessment
General
- Assess patient privately in a safe place, if feasible. Abbreviated assessment may be indicated based on patient’s mental state.
- Discreetly ask patient about past or present physical and emotional abuse, as a victim or witness.
- Note psychological/behavioral characteristics of abuse including: excessive crying, passivity or aggression; compliant or fearful behavior for safety of self, children, and/or pets; panic attacks, anxiety, depression, and/or suicidal ideation; substance abuse; vague or ambiguous chronic pain complaints; or age inappropriate behavior (e.g., children who act in a sexually inappropriate way).
- Assess for signs and symptoms of abuse:
 - Unexplained injuries or inconsistency with explanation: bruises; whiplash injuries; erythema due to slaps, grab-marks on arms or neck; burns, especially on genitals or buttocks, or with specific borders or shapes, (i.e., dip lines); lacerations, scars, or fractures including mandible; and multiple injuries in various stages of healing.
 - Strangulation /Choking, see Strangulation Policy 8.17.
 - Injury sites hidden by clothing or hair.
 - Injury during pregnancy
- Contact hospital by telephone, when feasible, to protect privacy of patient and family.

Sexual Assault
- Provide compassionate, non-judgmental support.
- Patient may prefer an EMS provider of the same gender as the patient, if available.
- Limit physical contact with patient to that which is required to perform assessment and treatment.
- Do not attempt to get a detailed description of event. Leave this to the police.
- Limit questions to: What happened? When did it occur? Did patient bathe or clean up after attack?
- Consider drug facilitated sexual abuse/assault: document torn, stained or bloody underclothing, unexplained injuries.

Suspected Disabled Person/ Elder/Child Abuse or Neglect
- Assess for neglect including hazardous living conditions, inappropriate clothing for weather, inadequate hygiene, absence of caregiver(s), or physical signs of malnutrition or over/under medication
- Assess all children carefully for physical injury whenever another household member is injured/abused in a domestic violence incident, and/or if the scene suggests a mechanism of injury such as broken glass or furniture.
- If physically uninjured, children should be sheltered from further harm on scene, (e.g., witnessing patient care or police interaction with the suspected abuser, or view of the crime scene). EMS may assist law enforcement with caring for the uninjured child until appropriate arrangements have been made by law enforcement.
- Consider non-accidental trauma in any infant presenting with any traumatic injury
- If a parent/guardian refuses treatment of a minor child or incapacitated adult whom you feel needs medical attention, contact law enforcement immediately.
Documentation and Evidence Preservation

- Document verbatim everything the patient or caregiver says that may be relevant. Do not paraphrase. Capture inconsistencies.
- If necessary to remove patient's clothing, do not damage evidence (rips, stains) if possible. Cut along seam lines.
- Preserve all evidence, see Crime Scene/Preservation of Evidence Policy 8.7

Reporting Procedures/Requirements

Suspected abuse, neglect, or exploitation of children or adults must be reported immediately, whether or not the patient is transported. Informing hospital personnel or involving law enforcement does not fulfill legal reporting requirements.

Child Abuse

Both the Department for Children, Youth, and Families (DCYF) and local police must be notified within 24 hours:

- Call DCYF at 1-800-894-5533, available 24 hours/day; if out-of-state: 603-271-6556.
- NOTE: Regardless of other agency's involvement, EMS is mandated to notify DCYF.
- Do not send reports of suspected child abuse by email.

NOTE: If an uninjured child witnesses violence, this qualifies as child abuse and neglect and mandates a report.

Abuse of Elders and Incapacitated Adults

- Call Bureau of Elderly & Adult Services at 800-949-0470 or 603-271-7014 between 8:00 am to 4:30 pm, Monday through Friday, for adults residing in:
 - Independent living situation (own home/apartment, home/apartment of friends or relatives, boarding home, or no fixed address).
 - Homes or programs affiliated with Bureau of Behavioral Health or Bureau of Developmental Services.
 - Hospital or rehabilitation center.
- Call Office of Long-Term Care Ombudsman at 800–442–5640 or 603–271–4375 between 8:00 am to 4:30 pm, Monday through Friday, for adult residents of nursing or assisted living facilities.
- Call local police department during non-work hours and holidays and follow up with a telephone call to Bureau of Elderly & Adult Services or Office of Long-Term Care Ombudsman during work hours.

Referral Information for Domestic Violence and Sexual Assault

The NH Coalition Against Domestic and Sexual Violence (NHCADSV) supports survivors of domestic and sexual violence and offers free, confidential services (emergency shelter and transportation, legal advocacy, hospital and court accompaniment, information about public assistance). Provide patient with referral information.

- 24-Hour Sexual Assault Crisis Line: 1-800-277-5570.
Additional Considerations: Sexual Assault

- Limit questions to the identification of injuries and pertinent medical information.
- Do not inspect genitals unless uncontrolled hemorrhage, trauma or severe pain present.
- Discourage patient from eating, drinking, smoking, bathing, or urinating until after hospital evaluation. Urine may be used as evidence of drug facilitated sexual assault. If patient needs to use restroom prior to transport, advise patient to not “wipe”.
- Suggest transport to hospital for prophylactic treatment for sexually transmitted disease or pregnancy, drug/alcohol screening and evidence preservation.
- If adult patient refuses care or transport, document any care provided thoroughly and handle any evidence as you would if transporting. Leave patient's belongings with patient. Provide patient with contact information for sexual assault crisis line 1-800-277-5570.
Implantable Ventricular Assist Devices (VAD)

Patient Care Goals
- Rapid identification of, and interventions for, cardiovascular compromise in patients with VADs
- Rapid identification of, and interventions for VAD-related malfunctions or complications

Indications
- Adult patients that have had an implantable ventricular assist device (VAD) including Left Ventricular Assist Device (LVAD), right ventricular assist device (RVADs); and biventricular-assist devices (BiVADs) and have symptoms of cardiovascular compromise
- Patients with VADs that are in cardiac arrest
- Patients with VADs that are experiencing a medical or injury-related event not involving the cardiovascular system or VAD malfunction

Contraindications
- Adult patients who do not have a VAD in place.

Assessment:
- Assess for possible pump malfunction
 - Assess for alarms
 - Auscultate for pump sound “hum”
 - Signs of hypoperfusion including pallor, diaphoresis, altered mental status
- If the VAD pump has malfunctioned:
 - Utilize available resources to troubleshoot potential VAD malfunctions and to determine appropriate corrective actions to restore normal VAD function:
 - Contact the patient’s VAD-trained companion, if available,
 - Contact the patient’s VAD coordinator, using the phone number on the device
 - Check all the connections to system controller
 - Change VAD batteries, and/or change system controller if indicated
 - Have patient stop all activity and assess for patient tolerance
 - Follow appropriate cardiovascular condition-specific protocol(s) as indicated

Treatment and Interventions:
- Manage airway as indicated
- Cardiac monitoring
- IV Access
- Acquire 12-lead EKG
- If patient is experiencing VAD-related complications or cardiovascular problems, expedite transport to the medical facility where VAD was placed if patient’s clinical condition and time allows
- If patient has a functioning VAD and is experiencing a non-cardiovascular-related problem, transport to a facility that is appropriate for the patient's main presenting problem without manipulating the device
Treatment and Interventions - continued:
- If patient has a functioning VAD and is experiencing a non-cardiovascular-related problem, transport to a facility that is appropriate for the patient's main presenting problem without manipulating the device
- If patient is in full cardiac arrest
 - CPR should NOT be performed if there is any evidence the pump is still functioning. The decision whether to perform CPR should be made based upon best clinical judgment in consultation with the patient's VAD-trained companion and the VAD coordinator (or medical control if VAD coordinator unavailable). CPR may be initiated only where:
 - You have confirmed the pump has stopped AND troubleshooting efforts to restart it have failed, AND
 - The patient is unresponsive and has no detectable signs of life

PEARLS
- You do not need to disconnect the controller or batteries in order to defibrillate or cardiovert
- You do not need to disconnect the controller or batteries in order to acquire a 12-lead EKG
- Flow though many VAD devices is not pulsatile and patients may not have a palpable pulse or accurate pule oximetry
- The blood pressure, if measureable, may not be an accurate measure of perfusion.
- Ventricular fibrillation, ventricular tachycardia, or asystole/PEA may be the patient's "normal" underlying rhythm. Evaluate clinical condition and provide care in consultation with VAD coordinator
- The patient's travel bag should accompany him/her at all times with back-up controller and spare batteries
- If feasible, bring the patient's Power Module, cable and Display Module with patient to the hospital
- All patients should carry a spare pump controller with them
- The most common cause for VAD alarms are low batteries or battery failures
- Although automatic non-invasive blood pressure cuffs are often ineffective in measuring systolic and diastolic pressure, if they do obtain a measurement, the MAP is usually accurate
- Other VAD complications:
 - Arrhythmias
 - Cardiac Tamponade
 - CHF
 - Aortic Insufficiency
EMT/ ADVANCED EMT / PARAMEDIC STANDING ORDERS

Key Documentation Elements
- Information gained from the VAD control box indicating any specific device malfunctions
- Interventions performed to restore a malfunctioning VAD to normal function
- Time of notification to and instructions from VAD-trained companion and/or VAD Coordinator

Performance Measures
- Identify and mitigate any correctable VAD malfunctions
- Perform CPR for patients in cardiac arrest when indicated

Resources:

Download onto your ambulances laptops the “MyLVAD Hospital Locator App

References:
- Shinar Z., et. al., Chest compressions may be safe in arresting patients with left ventricular assist devices (LVADs) Resuscitation 2014 May;85(5):702-4.
9.0 Hazardous Material Exposure

Purpose
The goal of the hazardous materials exposure protocol is to prepare the EMS provider for the potential risks that may be encountered and to provide guidelines to mitigate the effects of a hazardous exposure incident. The EMS provider may reference additional protocols for the management of specific hazardous materials exposure in dealing with known chemicals.

Successful management of a hazardous materials exposure depends on effective coordination between EMS, local hazardous materials teams, fire and police departments, the Poison Control Center, and appropriate state and federal agencies.

Identification
- Identification of the exposed material should be made at the earliest convenient time possible.
- Proper chemical name and spelling will be necessary for identification of procedures for Poison Control (1-800-222-1222) and receiving hospitals.
- Utilization of shipping papers, waybills, and Safety Data Sheets (SDS) may assist in identifying chemical hazards, safety precautions, personal protective equipment, and treatments.

Note: Many household chemicals may not require activation of a hazardous materials team. Utilize manufacturer’s recommendation for decontamination and treatment, or contact Poison Control for treatment and decontamination procedures.

Personal Safety
- Personal protection is the highest priority when responding to an incident where hazardous material exposure is suspected. DO NOT ENTER THE HOT ZONE. Only HazMat Teams should enter the hot zone.
- If there is a major hazardous materials release:
 o Request specific staging information and be alert for clusters of injured patients.
 o Maintain safe location upwind and uphill of the site (at least 300 ft.).
 o Observe strict adherence to hot, warm, and cold-zone areas for personal safety, decontamination, and treatment.
 o Activate the HazMat Response/Incident Command System.
 o Incident Command to notify NH Bureau of Emergency Management (603–271–2231) to request additional resources including law enforcement and pharmaceutical supply.

Hospital Notification
- Receiving hospitals should be notified as soon as it is determined you have contaminated patient(s) to ensure the facility is capable and prepared to receive a potentially contaminated patient. Communication with the hospital should include such information as covered under the documentation and treatment section.

Patient Decontamination
Only properly trained and protected personnel should conduct patient decontamination. The decontamination system is established by the appropriately trained fire department/HazMat Team. EMS personnel will work cooperatively with them during the decontamination process.

Patient decontamination is necessary to minimize injury due to exposure, as well as to mitigate risk of secondary exposure.
Mass/Gross Decontamination
- Mass Decontamination (Large-scale Multiple/Mass Casualty) involves the effective dilution of a chemical or hazardous substance utilizing large quantities of water. This process should be supervised by the appropriately trained local fire department or HazMat Team.
- This process is necessary due to the involvement of an overwhelming number of patients, the severity of symptoms, and where technical or fine decontamination cannot be utilized due to time and personnel.

Technical Decontamination
- Technical Decontamination involves a multi-step process, supervised by the appropriately trained fire department or HazMat Team.
- This decontamination process is dependent on the type of chemical hazard present, and may require different methods such as:
 - Dilution.
 - Absorption.
 - Neutralization.
 - Chemical degradation.
 - Solidification.

Each method of decontamination has specific uses.Ascertain from the HazMat Team which method was used, if there are any hazards associated with the decontamination process, and if further definitive decontamination is required at the hospital.

Definitive/Fine Decontamination
- Usually completed at the hospital, it involves additional washing and rinsing to further dilute and finally remove any contaminants. Definitive decontamination should be performed in an authorized decontamination facility and with appropriately trained personnel.

Decontamination of Special Populations
- Children and their families, the elderly/frail, and patients with medical appliances will require more EMS personnel and time for general assistance and may also require simultaneous basic life support assistance during decontamination. An individual patient requiring special needs decontamination may take 10 – 15 minutes to complete.

Although the principles of decontamination are the same, certain precautions may need to be taken, depending on the patient:
- These patients may have the inability to give history or describe symptoms and physical complaints.
- Typical stress response of children is to be highly anxious and inconsolable, making assessment difficult.
- Small children are more difficult to handle while wearing personal protection equipment (PPE).
- Attempt to keep children with their families, as the decontamination process is likely to be frightening and children may resist.
Keep patients with existing medical conditions together with their caregivers, if feasible. Children and elderly, and possibly special needs patients, are inherently unable to maintain body temperature and quickly become hypothermic. Utilize water warmed to 100°F, if available, keep warm after drying procedure. Use low-pressure water and soft washcloths and protect the airway and eyes throughout the decontamination process.

Treatment during Decontamination
- If medication is required, limit administration route to intramuscular or medi-inhaler.
- Intravenous therapy and advanced airway interventions should be delayed until after gross decontamination.
- Specific individual treatment should be referenced from Poison Control or MSDS sheets.

Document Exposure and Treatment Information
- Name of chemical(s).
- Amount, time, and route of exposure.
- Decontamination information.
- Treatment/antidotes administered.

Transport
- EMS personnel transporting potentially contaminated patients (e.g., patients who have received gross decontamination) must have appropriate PPE.
- Lining of the interior of the ambulance and further use of PPE may be necessary, dependent upon the level of completed decontamination.
- If an ambulance has transported a contaminated patient, it can only be used to transport similarly contaminated patients until proper decontamination of the vehicle is complete.
- Contaminated patients will not be transported by helicopter.
A multiple casualty incident (MCI) is any situation where the number of sick or injured patients exceeds the available local, regional or state EMS system resources to provide adequate care in a timely manner to minimize injury and death. An MCI may be the result of a man made disaster or a natural event.

Purpose

- The goal of the Mass/Multiple Casualty Triage protocol is to prepare for a unified, coordinated, and immediate EMS mutual aid response by prehospital and hospital agencies to effectively expedite the emergency management of the victims of any type of MCI.
- Successful management of any MCI depends upon the effective cooperation, organization, and planning among health care professionals, hospital administrators and out-of-hospital EMS agencies, state and local government representatives, and individuals and/or organizations associated with disaster-related support agencies.
- Adoption of a system that meets the Model Uniform Core Criteria (MUCC) as developed by the CDC.

EMS Provider Role

- All providers must have thorough knowledge of both the Incident Command System (ICS) and the triage system.
- Within the scope of the MCI, the EMS provider may perform procedures within their scope of practice.

Scene Assessment and Triage Priorities

1. The initial response team should assess the scene for potential hazards, safety and number of victims to determine the appropriate level of response.
2. Notify agency dispatch to declare an MCI and need for interagency support as defined by incident level. Agency dispatch should coordinate request for additional resources and contact local mutual aid, regional and state level agencies for assistance and notification as needed. Determine air medical transport availability.
3. Identify and designate the following positions as qualified personnel become available: EMS Command responsible for overall command of all EMS resources and tactics; Triage Officer responsible for overseeing all triage group activities; Treatment Officer responsible for overseeing all treatment group activities; Staging Officer responsible for overseeing staging of all arriving ambulances and other mobile EMS resources; Loading Officer responsible for overseeing loading of all treated patients into ambulances, buses, and helicopters and logging patient information, tag numbers and coordinating hospital destinations
4. Identify and designate EMS sector areas of MCI including Triage, Treatment, Staging and Loading.
5. Post incident MCI Plan.

Triage Process

Utilize a triage system such as “SALT” (Sort, Assess, Lifesaving Interventions, Treatment/Transport) to prioritize patients. SALT is part of the CDC - sponsored project based upon best evidence and designed to develop a national standard for mass casualty triage.

- Assess each patient as quickly as possible.
- Conduct rapid assessment.
- Assign patients to broad categories based on need for treatment (Still, Wave, Walk)
- Remember: Triage is not treatment! Stopping to provide care to one patient will only delay care for others. Standard triage care is only to correct airway and severe bleeding problems.
9.1 Mass/Multiple Casualty Triage

SALT Triage Categories:

- **RED** Immediate: Immediately life-threatening problems, high potential for survival
- **YELLOW** Delayed: Serious (not minor) injuries requiring care but management can be delayed without increasing morbidity or mortality
- **GREEN** Minimal: Injuries require minor care or no care
- **GREY** Expectant: Unlikely to survive given available resources.
- **BLACK** Dead: Patient is not breathing after opening airway. (In children, if after giving 2 rescue breaths, if appropriate.)

Tagging System
- Use water-repellent triage tags with waterproof markers and attach to the patient.
- Indicate patient's triage priority, degree of decontamination performed, treatment and medications received.

Triage in Hazardous Material Incidents

Decontamination
The need for decontamination is the "first triage decision." Since decontamination can be a lengthy process, the "second decision" is which patient(s) are the first to be decontaminated. The "third decision" is based on need for treatment during the decontamination process, since only simple procedures such as antidote administration can be accomplished while wearing PPE.

Identification and Treatment
- Signs and symptoms of exposure will usually dictate the treatment required, however, at the earliest possible time, identification of the specific chemical should be made.
- Reference additional hazardous materials protocols as necessary.
- Request additional resources. Initial antidote and medical supplies may be limited to priority patients.
- Respiratory compromise is a leading factor of fatalities due to hazardous material exposure.
- Symptoms of chemical exposure may be delayed and occur suddenly. Constant reevaluation of respiratory status is necessary.
SALT Mass Casualty Triage Algorithm
(Sort, Assess, Lifesaving Interventions, Treatment/Transport)

Step 1: Sort: Global Sorting
- Walk
 Assess 3rd
- Wave / Purposeful Movement
 Assess 2nd
- Still / Obvious Life Threat
 Assess 1st

Step 2 - Assess: Individual Assessment

Lifesaving Interventions:
- Control major hemorrhage
- Open airway (if child consider 2 rescue breaths)
- Chest decompression
- Auto injector antidotes

Breathing?
- No
 Dead
- Yes
 Decompression

Obey commands or makes purposeful movements?
- Has peripheral pulse?
- Not in respiratory distress?
- Major hemorrhage is controlled?

 Likely to survive given current resources?
- Yes
 Immediate
- No
 Expectant

All Yes
Minor injuries only?
- Yes
 Minimal
- No
 Delayed

Protocols, policies, or procedures MAY NOT BE altered or modified.
Radiation Injuries
Adult & Pediatric

Exposure to radioactive source or radioactive material/debris

<table>
<thead>
<tr>
<th>EMT/ADVANCED EMT STANDING ORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Remove the patient from scene and decontaminate by appropriately trained personnel.</td>
</tr>
<tr>
<td>- Triage tools for mass casualty incident</td>
</tr>
<tr>
<td>- If vomiting starts:</td>
</tr>
<tr>
<td>▪ Within 1 hour of exposure, survival is unlikely and patient should be tagged “Expectant.”</td>
</tr>
<tr>
<td>▪ Less than 4 hours after exposure, patient needs immediate decontamination and evaluation and should be tagged “immediate.”</td>
</tr>
<tr>
<td>▪ 4 hours after exposure, reevaluation can be delayed 24 – 72 hours if no other injury is present and patient should be tagged “Delayed.”</td>
</tr>
<tr>
<td>- Routine Patient Care.</td>
</tr>
<tr>
<td>- Treat traumatic injuries and underlying medical conditions.</td>
</tr>
<tr>
<td>- Patients with residual contamination risk from wounds, shrapnel, or internal contamination should be wrapped in water repellent dressings to reduce cross contamination.</td>
</tr>
<tr>
<td>- Consider Air Medical Transport after proven definitive decontamination of patient.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVANCED EMT STANDING ORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Consider anti-emetic, see Nausea/Vomiting Protocol 2.11.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMEDIC STANDING ORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Consider pain management, see Pain Management Protocol 2.15.</td>
</tr>
</tbody>
</table>

PEARLS:
- In general, trauma patients who have been exposed to or contaminated by radiation should be triaged and treated on the basis of the severity of their conventional injuries.
- A patient who is contaminated with radioactive material (e.g. flecks of radioactive material embedded in their clothing and skin) generally poses a minimal exposure risk to medical personnel.
<table>
<thead>
<tr>
<th>Level</th>
<th>Generic</th>
<th>Trade name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMT</td>
<td>Acetaminophen</td>
<td>Tylenol</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>EMT</td>
<td>Activated Charcoal</td>
<td></td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>EMT</td>
<td>Albuterol</td>
<td>Proventil</td>
<td>MDI Assist only</td>
</tr>
<tr>
<td>EMT</td>
<td>Aspirin</td>
<td></td>
<td>Adult</td>
</tr>
<tr>
<td>EMT</td>
<td>Atropine (autoinjector)</td>
<td>AtroPen, AtroPen Jr.</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>EMT</td>
<td>Atropine & Pralidoxime (autoinjector)</td>
<td>DuoDote or Nerve Agent Antidote Kit</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>EMT</td>
<td>Diazepam - rectal gel & nerve agent autoinjectors.</td>
<td>Diastat</td>
<td>Pedi and Adult - patient assist only</td>
</tr>
<tr>
<td>EMT</td>
<td>Epinephrine (autoinjector)</td>
<td>Epi-Pen, Epi-Pen Jr.</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>EMT</td>
<td>Dextrose</td>
<td>Oral Glucose</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>EMT</td>
<td>Ibuprofen</td>
<td>Motrin or Advil</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>EMT</td>
<td>Ipratropium Bromide (mixed with Albuterol)</td>
<td>Atrovent (mixed with Albuterol) OR DuoNeb</td>
<td>MDI Assist only</td>
</tr>
<tr>
<td>EMT</td>
<td>Naroxone</td>
<td>Narcan</td>
<td>Adult</td>
</tr>
<tr>
<td>EMT</td>
<td>Nitroglycerin</td>
<td>Tridil, Nitrobid, Nitrostat</td>
<td>Adult - patient assist</td>
</tr>
<tr>
<td>EMT</td>
<td>Pralidoxime (autoinjector)</td>
<td>2-Pam, Protopam Chloride</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>AEMT</td>
<td>Albuterol</td>
<td>Proventil</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>AEMT</td>
<td>Dextrose</td>
<td>D10</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>AEMT</td>
<td>Epinephrine</td>
<td></td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>AEMT</td>
<td>Glucagon</td>
<td></td>
<td>Adult & Pedi</td>
</tr>
<tr>
<td>AEMT</td>
<td>Hydrocortisone</td>
<td>SoluCortef</td>
<td>Pedi and Adult - patient assist only</td>
</tr>
<tr>
<td>AEMT</td>
<td>Hydroxocobalamin</td>
<td>Cyanokit®</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>AEMT</td>
<td>Ipratropium Bromide (mixed with Albuterol)</td>
<td>Atrovent (mixed with Albuterol) OR DuoNeb</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>AEMT</td>
<td>Lidocaine</td>
<td></td>
<td>Adult - IO anesthetic only</td>
</tr>
<tr>
<td>AEMT</td>
<td>Naroxone</td>
<td>Narcan</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>AEMT</td>
<td>Nitroglycerin</td>
<td>Tridil, Nitrobid, Nitrostat</td>
<td>Adult</td>
</tr>
<tr>
<td>AEMT</td>
<td>Nitrous Oxide premixed with oxygen</td>
<td>Nitronox®</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>AEMT</td>
<td>Ondansetron</td>
<td>Zofran</td>
<td>Adult</td>
</tr>
</tbody>
</table>

Appendix 1

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
2017 NH Approved EMS Medications

<table>
<thead>
<tr>
<th>Level</th>
<th>Generic</th>
<th>Trade name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramedic</td>
<td>Adenosine</td>
<td>Adenocard</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Amiodarone</td>
<td>Cordarone</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Antibiotics (Advanced Sepsis only)</td>
<td></td>
<td>Adult Prerequisite</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Atropine</td>
<td></td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Calcium Chloride</td>
<td></td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Calcium Gluconate</td>
<td></td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Dexamethasone</td>
<td>Decadron</td>
<td>Pediatric</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Diazepam</td>
<td>Valium</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Diltiazem</td>
<td>Cardizem, Dilacor, Tiazac</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Diphenhydramine</td>
<td>Benadryl</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Dolasetron</td>
<td>Anzemet</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Epinephrine</td>
<td></td>
<td>Pedi Nebulized</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Etomidate (RSI only)</td>
<td>Amidate</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Fentanyl</td>
<td>Sublimaze</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Granisetron</td>
<td>Kytril</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Haloperidol</td>
<td>Haldol</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Heparin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramedic</td>
<td>Hydrocortisone</td>
<td>SoluCortef</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Hydromorphone</td>
<td>Dilaudid</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Ketamine</td>
<td></td>
<td>Pedi & Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Ketorolac</td>
<td>Toradol</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Lidocaine</td>
<td></td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Lorazepam</td>
<td>Ativan</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Magnesium Sulfate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramedic</td>
<td>Methylprednisolone</td>
<td>Solumedrol</td>
<td>Adult & Pedi</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Metoclopramide</td>
<td>Reglan</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Metoprolol</td>
<td>Lopressor</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Midazolam</td>
<td>Versed</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Morphine</td>
<td></td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Norepinephrine</td>
<td>Levophed</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Ondansetron</td>
<td>Zofran</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Oxytocin</td>
<td>Pitocin</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Pralidoxime</td>
<td>2-Pam, Protopam Chloride</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Prednisone</td>
<td></td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Prochlorperazine</td>
<td>Compazine</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Proparacaine</td>
<td>Alcaine</td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Rocuronium (RSI only)</td>
<td>Zemuron</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Sodium Bicarbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramedic</td>
<td>Succinylcholine (RSI Only)</td>
<td>Anectine</td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Tetracaine</td>
<td></td>
<td>Pedi and Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Tranexamnic Acid (TXA)</td>
<td></td>
<td>Adult</td>
</tr>
<tr>
<td>Paramedic</td>
<td>Vecuronium (RSI Only)</td>
<td>Norcuron</td>
<td>Adult</td>
</tr>
</tbody>
</table>

Appendix 1

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Acetaminophen (Tylenol)

Indications/Contraindications:
- Indicated for fever control.
- Avoid in patients NSAID allergy, aspirin-sensitive asthma, or renal insufficiency.

Adult Protocol/Dosing:
- **Pain:**
 - 325 – 1000 mg PO, no repeat.
- **Musculoskeletal Injuries – Extended Care:**
 - 325-650 mg by mouth every 6 hours as needed, not to exceed 3000 mg/24hours.

Suggested Formulations:
- Oral 325 mg tablets, 500 mg tablets, 160 mg/5ml
- Rectal 325 mg supp, 650 mg supp, 80 mg supp

Activated Charcoal

Indications:
- Poisoning/Overdose.

Poisoning/Substance Abuse/OD:
- 25 – 50 grams PO if advised by Poison Control or Medical Control.

Suggested Formulations:
- Ez-Char 25 g (requires reconstitution)
- Kerr-Insta Char 25 g/120ml
- Actidose 25 g/120ml

Adenosine (Adenocard)

Indications/Contraindications:
- Specifically for treatment or diagnosis of Supraventricular Tachycardia.
- Consider for regular or wide complex tachycardia.

Adult Protocol/Dosing:
- **Tachycardia:**
 - 6 mg rapid IV push.
 - May repeat 12 mg every 1 – 2 minutes X 1, if no conversion.

Suggested Formulations:
- Intravenous
 - Adenosine pre-filled syringe 12 mg/4ml
 - Adenosine pre-filled syringe 6 mg/2ml
 - Adenocard 12 mg/4ml
 - Adenocard 6 mg/2ml

Albuterol

Beta-Agonist

Indications/Contraindications:
- Nebulized treatment for use in respiratory distress with bronchospasm.

Adult Protocol/Dosing:
- **Allergic Reaction/Anaphylaxis:**
 - 2.5 mg via nebulizer.
 - May repeat 2.5mg via nebulizer, repeat every 5 minutes (4 doses total).

Asthma/COPD/RAD
- 4 - 6 puffs per dose of MDI.
- May repeat every 5 minutes, as needed.
- Albuterol is second line drug, the initial treatment should be 2.5 mg albuterol and 0.5 mg ipratropium (DuoNeb).
- May repeat every 5 minutes (3 doses total).
- Following 3 DuoNeb treatments, 2.5 mg albuterol via nebulizer every 5 minutes, as needed.

Suggested Formulations:
- Albuterol
 - Albuterol 0.083% [2.5 mg/3 mL] nebu
 - Albuterol/Ipratropium (Duoneb)
 - Ipratropium bromide 0.5 mg and albuterol (base) 2.5 mg per 3 mL nebu
NH Adult Medication Reference

This document is to serve as a reference for the 2017 NH Patient Care Protocols. See the Pediatric Color Coded Appendix for pediatric dosages.

Medication Reference

Amiodarone (Cordarone)

Indications/Contraindications:
- Antiarrhythmic used mainly in wide complex tachycardia and ventricular fibrillation.
- Avoid in patients with heart block or profound bradycardia.
- Contraindicated in patients with iodine hypersensitivity.

Cardiac Arrest

V-Fib/Pulseless V-Tach
- 300 mg IV push.
- Repeat dose of 150 mg IV push for recurrent episodes.

Tachycardia - Wide complex tachycardia
- 150 mg in 50 – 100 mL normal saline or D5W over 10 min.
- May repeat once in 10 minutes.
- If successful, consider maintenance infusion of 1 mg/minute.

Suggested Formulations:
- Amiodarone HCL
 - 150 mg/3 mL (3 mL);
 - 450 mg/9ml (9ml)

Antibiotics

Severe Sepsis Prerequisite Protocol
- Per Medical Resource Hospital Agreement

Aspirin

Indications/Contraindications:
- An antiplatelet drug for use in cardiac chest pain.
- History of anaphylaxis to aspirin or NSAIDs
- Active GI bleeding

Acute Coronary Syndrome
- 324 mg by mouth (chewable).

Suggested Formulations:
- Oral
 - 81 mg chewable tablets

Atropine

Indications/Contraindications:
- Anticholinergic drug used in bradycardias and organophosphate poisonings.

Bradycardia
- 0.5 mg IV every 3 – 5 minutes up to maximum of 3 mg.

Organophosphate Poisoning and Nerve Agent
- 2 mg IM or IV every 5 minutes until secretions clear.

Suggested Formulations:
- Solution, Injection, as sulfate [preservative free]:
 - 0.4 mg/mL (1 mL)
 - 0.8 mg/mL (0.5 mL)
 - 1 mg/mL (1 mL)

- Device, Intramuscular, as sulfate:
 - AtroPen: 0.25 mg/0.3 mL (0.3 mL) [pyrogen free]
 - AtroPen: 0.5 mg/0.7 mL (0.7 mL); 1 mg/0.7 mL (0.7 mL); 2 mg/0.7 mL (0.7 mL) [pyrogen free; contains phenol]
NH Adult Medication Reference

This document is to serve as a reference for the 2017 NH Patient Care Protocols. See the Pediatric Color Coded Appendix for pediatric dosages.

<table>
<thead>
<tr>
<th>Medication</th>
<th>Adult Protocol/Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine and Pralidoxime Auto-Injector (DuoDote)</td>
<td>Nerve Agents</td>
</tr>
<tr>
<td>Nerve Agent Kit</td>
<td>- Patients experiencing: apnea, convulsions, unconsciousness, flaccid paralysis administer 3 DuoDote and 1 diazepam (10 mg) auto-injectors.</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>- Patients experiencing: dyspnea, twitching, nausea, vomiting, sweating, anxiety, confusion, constricted pupils, restlessness, weakness administer 1 DuoDote.</td>
</tr>
<tr>
<td>- Antidote for Nerve Agents or Organophosphate Overdose.</td>
<td>- Maintenance Dose: 1 DuoDote every 3 hours.</td>
</tr>
<tr>
<td>Calcium Chloride 10% solution</td>
<td>Bradyocardia</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>For suspected hyperkalemia with ECG changes or symptomatic calcium channel blocker overdose consider:</td>
</tr>
<tr>
<td>- Indicated for hyperkalemia or calcium channel blocker overdose.</td>
<td>- 1 gram IV / IO over 5 minutes, with continuous cardiac monitoring. May repeat in 10 minutes if clinical indication persists.</td>
</tr>
<tr>
<td></td>
<td>Cardiac Arrest - Wide Complex PEA</td>
</tr>
<tr>
<td></td>
<td>- 1 gram IV</td>
</tr>
<tr>
<td></td>
<td>Suggested Formulations:</td>
</tr>
<tr>
<td></td>
<td>Solution, Intravenous: Generic: 10% (10 mL)</td>
</tr>
<tr>
<td>Calcium Gluconate</td>
<td>Bradyocardia</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>For suspected hyperkalemia with ECG changes or symptomatic calcium channel blocker overdose consider:</td>
</tr>
<tr>
<td>- Indicated for hyperkalemia or calcium channel blocker overdose.</td>
<td>- 2 grams IV / IO over 5 minutes, with constant cardiac monitoring, may repeat in 10 minutes if clinical indication persists.</td>
</tr>
<tr>
<td></td>
<td>Cardiac Arrest - Wide Complex PEA</td>
</tr>
<tr>
<td></td>
<td>- 2 grams IV</td>
</tr>
<tr>
<td></td>
<td>Suggested Formulations:</td>
</tr>
<tr>
<td></td>
<td>Solution, Intravenous:</td>
</tr>
<tr>
<td></td>
<td>- 10% (250 mL, 500 mL, 1000 mL);</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Asthma – Adult</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>- 10 mg IV or PO</td>
</tr>
<tr>
<td>- COPD/Asthma</td>
<td>Dextrose</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>- Symptomatic hypoglycemia.</td>
<td>- Administer dextrose 10% IV via premixed infusion bag (preferred) or prefilled syringe until mental status returns to baseline and glucose level is greater than 70mg/dL or to a maximum of 25 grams (250mL). IV pump not required.</td>
</tr>
<tr>
<td>- Use in medication infusion medium.</td>
<td>Suggested Formulations:</td>
</tr>
<tr>
<td></td>
<td>Solution, Intravenous:</td>
</tr>
<tr>
<td></td>
<td>- 10% (250 mL, 500 mL, 1000 mL);</td>
</tr>
</tbody>
</table>

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified. 2015
Diazepam (Valium)

Benzodiazepine

Indications/Contraindications:
- Seizure control.
- Sedation.
- Anxiolytic.

Dosing

<table>
<thead>
<tr>
<th>Bradycardia</th>
<th>BiPAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mg IV, may repeat once in 5 minutes.</td>
<td>Consider administering anxiolytic: 5 mg IV (then 2.5 mg every 5 minutes to total of 20 mg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider administering anxiolytic: 5 mg IV (then 2.5 mg every 5 minutes to total of 20 mg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hyperthermia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mg IV, may repeat once in 5 minutes.</td>
</tr>
</tbody>
</table>

Nerve Agent

- 5 mg IV every 5 minutes; or 10 mg IM OR
- Diazepam auto-injector (10mg).
 - Repeat 10 minutes as needed

Poisoning/Substance Abuse/OD

- 2 mg IV, may repeat once in 5 minutes, OR
- 5 mg IM, may repeat once in 20 minutes

Seizure

- 5 – 10 mg IV (then 2.5 mg every 5 minutes to a total of 20 mg).

Restraints

- 2 mg IV, may repeat once in 5 minutes, OR
- 5 mg IM, may repeat once in 10 minutes

Tachycardia

- 2 mg IV, may repeat once in 5 minutes.

Traumatic Brain Injury

- 2 mg IV, may repeat once in 5 minutes.

Suggested Formulations:

- Solution, Injection: Generic: 5 mg/mL (2 mL, 10 mL)

Diltiazem (Cardizem)

Indications/Contraindications:
- Calcium channel blocker used to treat narrow complex SVT.
- Contraindicated in patients with heart block, ventricular tachycardia, WPW, and/or acute MI.

Tachycardia - Narrow Complex Tachycardia

- 0.25 mg/kg IV (maximum dose 20 mg).
 - May repeat dose in 15 minutes at 0.35 mg/kg (maximum dose 20 mg) if necessary.
 - Consider maintenance infusion 5 – 15 mg/hour.

Suggested Formulations:

- Solution, Intravenous, as hydrochloride: 25 mg/5 mL (5 mL, 25 mL); 50 mg/10 mL (10 mL); 125 mg/25 mL (25 mL)
NH Adult Medication Reference

This document is to serve as a reference for the 2017 NH Patient Care Protocols. See the Pediatric Color Coded Appendix for pediatric dosages.

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.

Diphenhydramine (Benadryl)
Indications/Contraindications:
- Antihistamine used as an adjunctive treatment in allergic reactions.
- Antidote for dystonic reaction.

Adult Protocol/Dosing

Allergic Reaction/Anaphylaxis	25 - 50 mg IM/IV or by mouth
Extended Care:	25 - 50 mg IM/IV or by mouth. May repeat every 4-6 hours as needed; maximum dose of 300mg in 24 hours.

Nausea/Vomiting

<table>
<thead>
<tr>
<th>25 – 50 mg IV/IM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Care:</td>
</tr>
<tr>
<td>For motion sickness: administer diphenhydramine:</td>
</tr>
<tr>
<td>Adult: 25 mg by mouth</td>
</tr>
<tr>
<td>Ages 2 – 5 years: 6.25 mg by mouth</td>
</tr>
<tr>
<td>Ages 6 – 11 years: 12.5 - 25 mg by mouth</td>
</tr>
</tbody>
</table>

Poisoning/Substance Abuse/OD

| 25 – 50 mg IV/IM. |

Restraints

| 25 – 50 mg IV/IM. |

Suggested Formulations:
- Oral: 25 mg Capsule

| Solution, Injection, as hydrochloride [preservative free]: 50 mg/mL (1 mL) |

Dolasetron (Anzemet)
Indications/Contraindications:
- Anti-Emetic used to control nausea and/or vomiting.

Adult Protocol/Dosing

| Nausea/Vomiting | 12.5 mg IV (one-time dose). |

Suggested Formulations:
- Solution, Intravenous, as mesylate: Anzemet: 20 mg/mL (0.625 mL)
NH Adult Medication Reference

This document is to serve as a reference for the 2017 NH Patient Care Protocols. See the Pediatric Color Coded Appendix for pediatric dosages.

<table>
<thead>
<tr>
<th>Medication</th>
<th>Adult Protocol/Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinephrine 1 mg/mL
Indications/Contraindications:</td>
<td>Allergic Reaction/Anaphylaxis
• 0.3 mg IM (0.3 mL) IM
 ■ Repeat every 5 minutes until signs and symptoms resolve
Anaphylaxis refractory to 3 or more doses of IM epinephrine, (e.g. persistent hemodynamic compromise, bronchospasm) consider:
• Infusion 2 – 10 micrograms/minute (Dilute epinephrine 1 mg in 1000 mL 0.9% NaCl for 1 microgram/mL)
Asthma/COPD/RAD
• 0.3 mg IM, lateral thigh preferred
Bradyarrhythmia:
• Infusion 2 -10 micrograms/minute via pump
Non – Traumatic Shock
If there is not adequate hemodynamic response after 2,000 mL IV fluid infused, consider:
• Infusion 2 -10 micrograms/minute via pump
Post Resuscitative Care
Post Resuscitation Hypotension:
• Infusion 2 -10 micrograms/minute via pump
Sepsis
• Infusion 2 – 10 micrograms/minute via pump.</td>
</tr>
<tr>
<td>Bronchodilation in Asthma and COPD exacerbation. Primary treatment for anaphylaxis
Vasopressor in cardiac arrest.</td>
<td></td>
</tr>
<tr>
<td>Epinephrine 0.1 mg/mL
Indications/Contraindications:</td>
<td>Cardiac Arrest
• 1 mg IV.
 ■ Repeat every 3 – 5 minutes.</td>
</tr>
<tr>
<td>Vasopressor used in cardiac arrest.</td>
<td>Suggested Formulations:
Device, Injection:
• EpiPen 2-Pak: 0.3 mg/0.3 mL (2 ea) [latex free; contains sodium metabisulfite]
• EpiPen Jr 2-Pak: 0.15 mg/0.3 mL (2 ea) [contains sodium metabisulfite]
• Auvi-Q: 0.15 mg/0.15 mL (2 ea); 0.3 mg/0.3 mL (2 ea) [contains sodium bisulfite]
Nebulization Solution, Inhalation [preservative free]:
• S2: 2.25% (1 ea) [sulfite free; contains edetate disodium]
Solution, Injection:
• Generic: 0.1 mg/mL (10 mL); 1 mg/mL (1 mL)
Solution, Intravenous [preservative free]:
Generic: 1 mg/mL (1 mL)
</td>
</tr>
<tr>
<td>Etomidate (Amidate)
Indications/Contraindications:</td>
<td>Rapid Sequence Intubation
• 0.3 mg/kg IBW IV, maximum single dose 30 mg
 ○ For elderly, shock or risk of hypotension: 0.15 mg/kg IBW IV</td>
</tr>
<tr>
<td>Sedative used in Rapid Sequence Intubation.</td>
<td>Suggested Formulations:
Solution, Intravenous:
• Amidate: 2 mg/mL (10 mL, 20 mL) [contains propylene glycol]
• Generic: 2 mg/mL (10 mL, 20 mL)
</td>
</tr>
</tbody>
</table>

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified. 2015

Appendix 2
NH Adult Medication Reference

This document is to serve as a reference for the 2017 NH Patient Care Protocols. See the Pediatric Color Coded Appendix for pediatric dosages.

<table>
<thead>
<tr>
<th>Medication</th>
<th>Adult Protocol/Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fentanyl</td>
<td>Acute Coronary Syndrome</td>
</tr>
<tr>
<td>(Sublimaze)</td>
<td>• 25 – 100 mcg slow IV push, every 5 minutes to a total of 300 micrograms and systolic BP remains > 100 mmHg</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>Pain</td>
</tr>
<tr>
<td>• Narcotic analgesic</td>
<td>• 25 – 100 mcg slow IV push, every 2 – 5 minutes to a total of 300 micrograms titrated to pain relief.</td>
</tr>
<tr>
<td>• Avoid use if BP < 100 mmHg.</td>
<td>Post Intubation – Analgesia:</td>
</tr>
<tr>
<td></td>
<td>• 50 – 100 mcg slow IV push every 5 – 10 minutes as needed</td>
</tr>
<tr>
<td></td>
<td>RSI PRemedication (if indicated)</td>
</tr>
<tr>
<td></td>
<td>• 1 – 3 micrograms/kg IBW IV at least three minutes propr to induction</td>
</tr>
<tr>
<td></td>
<td>Suggested Formulations:</td>
</tr>
<tr>
<td></td>
<td>• Injection, solution, as citrate [strength expressed as base, preservative free]: 0.05 mg/mL (2 ml)</td>
</tr>
<tr>
<td>Glucagon</td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>• 1 mg IM.</td>
</tr>
<tr>
<td>• Converts glycogen to glucose in the liver to increase blood sugar</td>
<td>• Recheck glucose 15 minutes after administration of glucagon.</td>
</tr>
<tr>
<td>• Use in patients with no IV access</td>
<td>• May repeat glucagon 1mg IM if glucose level is <70mg/dl with continued altered mental status.</td>
</tr>
<tr>
<td>• Indicated for beta blocker or calcium channel blocker overdose</td>
<td>Bradycardia</td>
</tr>
<tr>
<td></td>
<td>• 5 mg IV over 3 – 5 minutes.</td>
</tr>
<tr>
<td></td>
<td>Suggested Formulations:</td>
</tr>
<tr>
<td></td>
<td>• Glucagon Emergency: 1 mg</td>
</tr>
<tr>
<td></td>
<td>• Solution Reconstituted, Injection, as hydrochloride:</td>
</tr>
<tr>
<td></td>
<td>• GlucaGen: 1 mg (1 ea)</td>
</tr>
<tr>
<td></td>
<td>• GlucaGen HypoKit: 1 mg (1 ea)</td>
</tr>
<tr>
<td>Glucose Oral</td>
<td>Diabetic Emergencies</td>
</tr>
<tr>
<td>Glucose Solutions</td>
<td>• Administer 1 tube of commercially prepared glucose gel or equivalent.</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>Suggested Formulations:</td>
</tr>
<tr>
<td>• Use in conscious hypoglycemic states.</td>
<td>Gel, Oral:</td>
</tr>
<tr>
<td></td>
<td>• Glucose 15: 40% (37.5 g)</td>
</tr>
<tr>
<td></td>
<td>• Glucose 15: 40% (37.5 g) [lemon flavor]</td>
</tr>
<tr>
<td></td>
<td>• Glucose 45: 40% (112.5 g) [lemon flavor]</td>
</tr>
<tr>
<td></td>
<td>• Insta-Glucose: 77.4% (31 g)</td>
</tr>
<tr>
<td></td>
<td>Liquid, Oral:</td>
</tr>
<tr>
<td></td>
<td>• Glutol: 55 % (180 mL) [lemon flavor]</td>
</tr>
<tr>
<td>Granisetron</td>
<td>Nausea/Vomiting</td>
</tr>
<tr>
<td>(Kytril)</td>
<td>• 0.1 - 1mg IV over 5 minutes (one-time dose).</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>Suggested Formulations:</td>
</tr>
<tr>
<td>• Anti-Emetic used to control nausea and/or vomiting.</td>
<td>Solution, Intravenous:</td>
</tr>
<tr>
<td></td>
<td>• Generic: 0.1 mg/mL (1 mL); 1 mg/mL (1 mL); 4 mg/4 mL (4 mL)</td>
</tr>
</tbody>
</table>

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified. 2015

Appendix 2
NH Adult Medication Reference

This document is to serve as a reference for the 2017 NH Patient Care Protocols.

See the Pediatric Color Coded Appendix for pediatric dosages.

<table>
<thead>
<tr>
<th>Medication</th>
<th>Adult Protocol/Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloperidol (Haldol)</td>
<td>Restraints</td>
</tr>
<tr>
<td>Phenothiazine</td>
<td>For patients with suspected Excited/Agitated Delirium, extreme agitation or ineffectiive control with benzodiazepines:</td>
</tr>
<tr>
<td>Preparation</td>
<td>In combination with Midazolam:</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td>Haloperidol 10 mg IM, may repeat once in 10 minutes.</td>
</tr>
<tr>
<td>• Medication to assist with sedation of agitated patients.</td>
<td></td>
</tr>
<tr>
<td>• Chemical restraint.</td>
<td></td>
</tr>
<tr>
<td>Suggested Formulations:</td>
<td></td>
</tr>
<tr>
<td>Solution, Injection, as lactate [strength expressed as base]:</td>
<td></td>
</tr>
<tr>
<td>• Haldol: 5 mg/mL (1 mL)</td>
<td></td>
</tr>
<tr>
<td>• Generic: 5 mg/mL (1 mL, 10 mL)</td>
<td></td>
</tr>
<tr>
<td>Heparin</td>
<td>Acute Coronary Syndrome</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td></td>
</tr>
<tr>
<td>• STEMI and no affirmative finding from fibrinolytic questionnaire.</td>
<td></td>
</tr>
<tr>
<td>• Contraindication - history of Heparin Induced Thrombocytopenia</td>
<td></td>
</tr>
<tr>
<td>Suggested Formulations:</td>
<td></td>
</tr>
<tr>
<td>Solution, Injection, as sodium:</td>
<td></td>
</tr>
<tr>
<td>• Generic: 1000 units (500 mL); 2000 units (1000 mL); 12,500 units (250 mL); 25,000 units (250 mL, 500 mL); 1000 units/mL (1 mL, 10 mL, 30 mL); 2500 units/mL (10 mL); 5000 units/mL (1 mL, 10 mL); 10,000 units/mL (1 mL, 4 mL, 5 mL); 20,000 units/mL (1 mL)</td>
<td></td>
</tr>
<tr>
<td>Solution, Intravenous, as sodium:</td>
<td></td>
</tr>
<tr>
<td>Hep Flush-10: 10 units/mL (10 mL)</td>
<td></td>
</tr>
<tr>
<td>Hydrocortisone (Solu-Cortef)</td>
<td>Adrenal Insufficiency</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td></td>
</tr>
<tr>
<td>• Adrenal Insufficiency</td>
<td></td>
</tr>
<tr>
<td>Suggested Formulations:</td>
<td></td>
</tr>
<tr>
<td>Solution Reconstituted, Injection, as sodium succinate [strength expressed as base]:</td>
<td></td>
</tr>
<tr>
<td>• A-Hydrocort: 100 mg (1 ea)</td>
<td></td>
</tr>
<tr>
<td>• Solu-CORTEF: 100 mg (1 ea)</td>
<td></td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>Pain – Adult</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td></td>
</tr>
<tr>
<td>• Pain control</td>
<td></td>
</tr>
<tr>
<td>Hydroxocobalamin (Cyanokit)</td>
<td>Smoke Inhalation</td>
</tr>
<tr>
<td>Indications/Contraindications:</td>
<td></td>
</tr>
<tr>
<td>• Smoke Inhalation</td>
<td></td>
</tr>
<tr>
<td>• Via use of Cyanokit.</td>
<td></td>
</tr>
</tbody>
</table>

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified. 2015
Ibuprofen

Indications/Contraindications:
- A non-steroidal anti-inflammatory drug (NSAID) fever control.
- Avoid in women who are pregnant or could be pregnant.
- Use with caution in patients with dehydration, cardiovascular disease, or preexisting renal disease.

Adult Protocol/Dosing:
- **Musculoskeletal – Extended Care**
 - 400 – 600 mg by mouth; repeat every 6 hours as needed.

Suggested Formulations:
- **Capsule, Oral:**
 - Generic: 200 mg
 - Advil: 200 mg

Ipratropium Bromide

Indications/Contraindications:
- Anticholinergic bronchodilator. Blocks the muscarinic receptors of acetylcholine.
- Relief of bronchospasm in patients with reversible obstructive airway disease and bronchospasm.

Adult Protocol/Dosing:
- **Asthma/COPD/RAD**
 - 0.5 mg ipratropium and 2.5 mg albuterol(DouNeb).
 - May repeat every 5 minutes (3 doses total).

Suggested Formulations:
- **Solution, Inhalation, as bromide:**
 - Generic: 0.02% (2.5 mL)
- **Aerosol Solution, Inhalation, as bromide:**
 - Atrovent HFA: 17 mcg/actuation (12.9 g) [contains alcohol, usp]

Ketamine

Indications/Contraindications:
- Short acting dissociative anaesthetic

Adult Protocol/Dosing:
- **Pain**
 - 10 – 20 mg IV diluted in 50 – 100 mL 0.9% NaCl over 10 minutes (no IVpump needed), may repeat every 5 minutes to a total of 40 mg, as tolerated

- **Post Intubation – Sedation:**
 - 1 mg/kg IV every 5 – 15 minutes as needed

- **Rapid Sequence Intubation**
 - 2 mg/kg IBW IV or 4 mg/kg EBW IM
 - For elderly, shock or risk of hptension: 1 mg/kg BIW IV or 2 mg/kg IBW IM

- **Restraints – Excited/Agitated Delirium:**
 - 4 mg/kg IM rounded to nearest 50 mg, maximum dose 500 mg, repeat 100 mg IM in 5 – 10 minutes

Suggested Formulations:
- **Solution, Injection:**
 - Ketalar: 10 mg/mL (20 mL); 50 mg/mL (10 mL); 100 mg/mL (5 mL)
 - Generic: 10 mg/mL (20 mL); 50 mg/mL (10 mL); 100 mg/mL (5 mL, 10 mL)
Ketorolac (Toradol)

Indications/Contraindications:
- A nonsteroidal anti-inflammatory drug used for pain control.
- Consider as first line in renal colic.
- Avoid Ketorolac in patients with NSAID allergy, aspirin-sensitive asthma, renal insufficiency, pregnancy, or known peptic ulcer disease.
- Avoid NSAIDS in women who are pregnant or could be pregnant.
- Avoid in patients currently taking anticoagulants such as coumadin.

Pain Management
- 15 mg IV/IM (no repeat)

Suggested Formulations:
- Solution, Injection,
 - Generic: 15 mg/mL (1 mL); 30 mg/mL (1 mL); 60 mg/2 mL (2 mL)

Lidocaine

Indications/Contraindications:
- Antiarrhythmic used for control of ventricular dysrhythmias.
- Anesthetic for nasotracheal intubation and intraosseous infusion.

Cardiac Arrest
- 1 – 1.5 mg/kg IV.
 - Repeat dose 0.75 mg/kg up to a maximum dose of 3 mg/kg.

Tachycardia
- 1 – 1.5 mg/kg IV. (considered second-line therapy to Amiodarone).
 - May repeat once in 5 minutes to maximum of 3mg/kg.
 - If successful, consider a maintenance infusion of 1 – 4mg/minute.

Nasotracheal Intubation
- 2% lidocaine jelly.

Intraosseous
- 1 – 2.5 ml (20 – 50 mg) 2% lidocaine.
<table>
<thead>
<tr>
<th>Medication Adult Protocol/Dosing</th>
<th>Lorazepam (Ativan) Benzodiazepine</th>
</tr>
</thead>
</table>
| **Indications/Contraindications:** | **Seizure control.**
| | **Sedation.**
| | **Anxiolytic.**
| Bradycardia | 1 mg IV, may repeat once in 5 minutes OR
| | 2 mg IM, may repeat once in 10 minutes.
| BiPAP | 0.5 – 1 mg IV may repeat once in 5 minutes or; 1 – 2 mg IM may repeat once in 10 minutes
| CPAP | 0.5 – 1 mg IV may repeat once in 5 minutes or; 1 – 2 mg IM may repeat once in 10 minutes
| Hospice – Anxiety: | 0.25 – 2 mg PO or SL
| Hyperthermia | 1 mg IV, may repeat once in 5 minutes OR
| | 2 mg IM, may repeat once in 10 minutes.
| Nerve Agent | 1 mg IV, may repeat once in 5 minutes OR
| | 2 mg IM, may repeat once in 10 minutes.
| Poisoning/Substance Abuse/OD | 1 mg IV, may repeat once in 5 minutes OR
| | 2 mg IM, may repeat once in 10 minutes.
| Post Intubation/SGA Care - Sedation | 1 – 2 mg IV every 15 minutes as needed (maximum 10 mg)
| Restraints | 2 mg IM, may repeat once in 20 minutes; or 1 mg IV, may repeat once in 5 minutes
| Seizure | 2 – 4 mg IV every 5 minutes to a total of 8mg
| Tachycardia | 1 mg IV, may repeat once in 5 minutes OR
| | 2 mg IM, may repeat once in 10 minutes.
| Traumatic Brain Injury | 1 mg IV, may repeat once in 5 minutes OR
| | 2 mg IN, may repeat once in 10 minutes.
| Suggested Formulations: |
| Solution, Injection: |
| | Generic: 2 mg/mL (1 mL, 10 mL); 4 mg/mL (1 mL, 10 mL)
| **Special Note** | Product should be refrigerated unless specified otherwise**

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified. 2015
Magnesium Sulfate

Indications/Contraindications:
- Elemental electrolyte used to treat eclampsia during the third trimester of pregnancy.
- A smooth muscle relaxor used in refractory respiratory distress resistant to beta-agonists.
- Torsades de Pointes.

Adult Protocol/Dosing

- **Asthma/COPD/RAD**
 - 2 grams in 100 ml NS given IV over 10 minutes.

- **Obstetrical Emergencies**
 - Magnesium sulfate, 4 grams IV (mix in 100 mL 0.9% NaCl) bolus over 10 minutes, then consider 1 gram/hr continuous infusion

- **Seizure**
 - Magnesium sulfate, 4 grams IV (mix in 100 mL 0.9% NaCl) bolus over 10 minutes, then consider 1 gram/hr continuous infusion

Cardiac Arrest/Tachycardia – Torsades de Pointes.
- 1 – 2 grams IV over 5 minutes.

Suggested Formulations:
- **Solution, Injection:**
 - Generic: 40 mg/mL (50 mL, 100 mL, 500 mL, 1000 mL); 80 mg/mL (50 mL); 50% (2 mL, 10 mL, 20 mL, 50 mL)
- **Solution, Intravenous:**
 - Generic: 10 mg/mL (100 mL); 20 mg/mL (500 mL)

Special Note
1 g of magnesium sulfate = elemental magnesium 98.6 mg = magnesium 8.12 mEq = magnesium 4.06 mmol

Methylprednisolone (Solu-medrol)

Indications/Contraindications:
- Steroid used in respiratory distress to reverse inflammatory and allergic reactions.

Adult Protocol/Dosing

- **Allergic Reaction**
 - Extended Care
 - 125 mg IV.

- **Asthma/COPD/RAD**
 - 125 mg IV.

Suggested Formulations:
- **Solution Reconstituted, Injection, as sodium succinate:**
 - Solu-MEDROL: 40 mg (1 ea); 125 mg (1 ea); 500 mg (1 ea); 1000 mg (1 ea)

Metoclopramide (Reglan)

Indications/Contraindications:
- Anti-Emetic used to control Nausea and/or Vomiting.

Adult Protocol/Dosing

- **Nausea/Vomiting**
 - 5mg IV.
 - May repeat once after 10 minutes if nausea/vomiting persists
 - Extended care, may repeat every 4 – 6 hours as needed.

Suggested Formulations:
- **Solution, Injection:**
 - Generic: 5 mg/mL (2 mL)
<table>
<thead>
<tr>
<th>Medication</th>
<th>Adult Protocol/Dosing</th>
</tr>
</thead>
</table>
| **Metoprolol** (Lopressor) | **Tachycardia**
- 5mg IV over 2 – 5 minutes.
- May repeat every five minutes to a maximum of 15mg as needed to achieve a ventricular rate of 90 – 100. |

Suggested Formulations:
Solution, Intravenous, as tartrate:
- Generic: 1 mg/mL (5 mL); 5 mg/5 mL (5 mL)
- Lopressor: 1 mg/mL (5 mL)
This document is to serve as a reference for the 2017 NH Patient Care Protocols.

See the Pediatric Color Coded Appendix for pediatric dosages.

<table>
<thead>
<tr>
<th>Medication</th>
<th>Adult Protocol/Dosing</th>
</tr>
</thead>
</table>
| **Midazolam**
(Versed)
Benzodiazepine | Bradycardia
- 2.5 mg IV/IN may repeat once in 5 minutes OR
- 5 mg IM may repeat once in 10 minutes.
BiPAP
- 2.5 mg IV/IN may repeat once in 5 minutes OR
- 5 mg IM may repeat once in 10 minutes.
CPAP
- 2.5 mg IV/IN may repeat once in 5 minutes OR
- 5 mg IM may repeat once in 10 minutes.

Indications/Contraindications:
- Seizure control.
- Sedation.
- Anxiolytic.

Hospice – Anxiety:
- 2.5 mg IN, repeat every 10 – 15 minutes as needed to a maximum of 6 mg

Hyperthermia
- 2.5 mg IV/IN may repeat once in 5 minutes OR
- 5 mg IM may repeat once in 10 minutes.

Nerve Agent
- 2.5 mg IV/IN may repeat once in 5 minutes OR
- 5 mg IM may repeat once in 10 minutes.

Poisoning/Substance Abuse/OD
- 2.5 mg IV/IN may repeat once in 5 minutes OR
- 5 mg IM may repeat once in 20 minutes.

Post ETT Care
- 2 – 5 mg IV, every 5 – 10 minutes as needed.

Rapid Sequence Intubation
- 2 – 5 mg IV bolus followed by infusion via pump 5 – 30 mg/hour
 - If infusion not used or if additional sedation is required: 2 -5 mg IV every 5 – 10 minutes as needed

Seizure
- Midazolam 10 mg IM (preferred route) every 10 minutes or 5 – 10 mg IV/IN every 5 minutes

Restraints
- 5mg IM, may repeat once in 20 minutes; or 2.5 mg IV/IN, may repeat once in 5 minutes

Excited/Agitated Delirium
- 5mg IV/IM/IN; may repeat once in 10 minutes

Tachycardia
- 2.5 mg IV/IN may repeat once in 5 minutes OR
- 5 mg IM may repeat once in 10 minutes.

Traumatic Brain Injury
- 2.5 mg IV/IN may repeat once in 5 minutes OR
- 5 mg IM may repeat once in 10 minutes.

Suggested Formulations:
Solution, Injection
- Generic: 2 mg/2 mL (2 mL); 5 mg/5 mL (5 mL); 5 mg/mL (1 mL); 10 mg/2 mL (2 mL)

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified. 2015
Morphine Sulfate

Indications/Contraindications:
- Narcotic analgesic
- Avoid use if BP < 100 mmHg.

Acute Coronary Syndrome
- 2 – 5 mg IV/IM every 5 minutes to a maximum of 15 mg titrated to pain and systolic BP remains >100 mmHg.

Pain
- 2 – 5 mg IV/IM every 10 minutes to a total of 20 mg titrated to pain relief and if systolic BP is >100 mmHg.

Suggested Formulations:
- Solution, Injection, as sulfate:
 - Generic: 2 mg/mL (1 mL); 10 mg/mL (1 mL)

Naloxone (Narcan)

Narcotic Antagonist

Indications/Contraindications:
- Narcotic overdose.

Pain Antidote: For hypoventilation from opiate administration by EMS personnel, assist ventilations and administer naloxone 0.4 mg IV/IM or 2 mg IN. If no response, may repeat initial dose every 5 minutes to a total of 10 mg.

Poisoning/Substance Abuse/OD

Narcotic OD
- 1 mg (1 mL) per nostril (IN) via prefilled syringe and atomizer for a total of 2 mg.
 - If no response repeat in 3 - 5 minutes.
- 0.4 – 2.0 mg IV/IM or 2 mg IN.
- 4 mg (0.5 mL) commercially prepared nasal spray

Suggested Formulations:
- Solution, Injection, as hydrochloride
 - Generic: 1 mg/mL (2 mL)
- Solution Auto-injector, Injection, as hydrochloride:
 - Evzio: 0.4 mg/0.4 mL (0.4 mL)
Nitroglycerin

Indications/Contraindications:
- Vasodilator used in the treatment of CHF and chest pain secondary to acute coronary syndrome
- Infusion pump required for infusion

Acute Coronary Syndrome
- Facilitate administration of the patient’s own nitroglycerin every 3 – 5 minutes while symptoms persist and systolic BP remains >100 mmHg, to a total of 3 doses
- 0.4 mg SL every 3 – 5 minutes while symptoms persist and if systolic BP remains >100 mmHg.
- 10 micrograms/minute if symptoms persist after 3rd SL nitroglycerin (must be on a pump).
 - Increase IV nitroglycerin by 10 micrograms/minute every 5 minutes while symptoms persist and systolic remains >100 mmHg.
- If IV nitroglycerin is not available, consider the application of nitroglycerin paste 1 – 2 inches transdermally.

Congestive Heart Failure
For patient’s with known history of congestive heart failure, consider:
- For systolic BP of 140 - 160 mmHg: nitroglycerin 0.4 mg SL.
- For systolic BP of 160 - 200 mmHg: nitroglycerin 0.8 mg SL (2 tabs/sprays).
- For systolic BP > 200 mmHg: nitroglycerin 1.2 mg SL (3 tabs/sprays).
- The above doses may be repeated every 5 minutes until symptomatic improvement or systolic BP of 140 mmHg.
- Assess blood pressure every 3 – 5 minutes during nitroglycerin administration
 - Titrate until symptomatic improvement or systolic BP of 140 mmHg.
 - For systolic BP of 140 - 160 mmHg: IV nitroglycerin start at 50 micrograms/minute.
 - For systolic BP of 160 - 200 mmHg: IV nitroglycerin start at 100 micrograms/minute.
 - For systolic BP > 200 mmHg: nitroglycerin start at 200 micrograms/minute.
 - Note: It is recommended two (2) IV lines in place and the IV nitroglycerin must be on an infusion pump. Generally, accepted maximum dose: 400 micrograms/minute
 - Nitroglycerin paste 1” – 2” transdermally, IV nitroglycerin preferred.

Nitrous Oxide

Indications/Contraindications:
- "non-narcotic analgesic gas
- Contraindicated in abdominal pain, pneumothorax, head injury, or diving emergency patients

Pain
- Patient self administers gas for pain control as needed
Norepinephrine (Levophed)
Indications/Contraindications:
- Apha and Beta 1 receptor adrenergic receptor agonist vasopressor
- Infusion pump required.

Bradycardia
- Infusion 1 – 30 microgram/minute (Dilute 4 mg in 1000 mL in NaCl for 4 micrograms/mL) via pump

Non – Traumatic Shock
If there is not adequate hemodymanic response after 2,000 mL IV fluid infused, consider:
- Infusion 1 - 30 micrograms/minute via pump

Post Resuscitation Care
- Infusion 1 – 30 microgram/min via pump

Sepsis
- Infusion 1 – 30 microgram/minute via pump

Suggested Formulations:
Solution, Intravenous [strength expressed as base]:
- Levophed: 1 mg/mL (4 mL) [contains sodium metabisulfite]
- Generic: 1 mg/mL (4 mL)

Ondansetron (Zofran)
Anti-emetic
Indications/Contraindications:
- Anti-Emetic used to control Nausea and/or Vomiting.

Nausea/Vomiting
- 4 mg by mouth or IV

Tablet Dispersible, Oral:
- Zofran ODT: 4 mg,
- Generic: 4 mg,

Solution, Injection [preservative free]:
- Generic: 4 mg/2 mL (2 mL)

Oxygen
Indications/Contraindications:
- Indicated in any condition with increased cardiac work load, respiratory distress, or illness or injury resulting in altered ventilation and/or perfusion. Goal oxygen saturation 94 - 99%.
- Indicated for pre-oxygenation whenever possible prior to endotracheal intubation. Goal oxygen saturation 100%.

1-4 liters/min via nasal cannula.
6-15 liters/min via NRB mask.
15 liters via BVM / ETT / supraglottic airway.

Oxytocin (Pitocin)
Indications/Contraindications:
Routine administration after placental delivery

Obstetrical & Childbirth
- Oxytocin 10 units IM.
<table>
<thead>
<tr>
<th>Medication</th>
<th>Adult Protocol/Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pralidoxime
(2-PAM)
Indications/Contraindications:
- Antidote for Nerve Agents or Organophosphate Overdose.
- Administered with Atropine.</td>
<td>Nerve Agent
- 1 – 2 grams in 50 – 250 mL of 0.9% NaCl, over 15 – 30 minutes (pump not required), may repeat within 1 hour if muscle weakness and fasciculations are not relieved. Additional doses may be needed every 3 – 8 hours, if signs of poisoning recur.
- Medical Control: Maintenance infusion: up to 500mg per hour (maximum of 12 grams/day).</td>
</tr>
<tr>
<td>Prochlorperazine
(Compazine)
Indications/Contraindications:
- Anti-Emetic used to control Nausea and/or Vomiting.</td>
<td>Nausea/Vomiting
- 5 – 10 mg IV, or 5mg IM.

Suggested Formulations:
- Solution, Injection, as edisylate [strength expressed as base]:
- Generic: 5 mg/mL (2 mL, 10 mL)</td>
</tr>
<tr>
<td>Proparacaine
(Alcaine)
Indications/Contraindications:
- Topical anesthetic</td>
<td>Eye & Dental
- 2 drops to affected eye; repeat every 5 minutes as needed.

Suggested Formulations:
- Solution, Ophthalmic, as hydrochloride:
- Alcaine: 0.5% (15 mL)
- Parcaine: 0.5% (15 mL)
- Generic: 0.5% (15 mL)</td>
</tr>
<tr>
<td>Rocuronium
Indications/Contraindications:
- Non-depolarizing paralytic agent used as a component of rapid sequence intubation, when succinylcholine is contraindicated and for post intubation paralysis.</td>
<td>Rapid Sequence Intubation
- 1mg/kg IBW IV.

Suggested Formulations:
- Solution, Intravenous, as bromide:
- Zemuron: 50 mg/5 mL (5 mL); 100 mg/10 mL (10 mL)
- Generic: 50 mg/5 mL (5 mL); 100 mg/10 mL (10 mL)</td>
</tr>
<tr>
<td>Sodium Bicarbonate
Indications/Contraindications:
- A buffer used in acidosis to increase the pH in Cardiac Arrest, Hyperkalemia or Tricyclic Overdose.</td>
<td>Poisoning/Substance Abuse/OD
- Tricyclic with symptomatic dysrhythmias, (eg. tachycardia and wide QRS):
- 2 meq/kg IV.
- Cardiac Arrest
- 2 meq/kg IV.</td>
</tr>
</tbody>
</table>
Succinylcholine

Paralytic Agent

Indications/Contraindications:
- Paralytic Agent used as a component of rapid sequence intubation.
- Avoid in patients with burns >24 hours old, chronic neuromuscular disease (e.g., muscular dystrophy), ESRD, or other situation in which hyperkalemia is likely.

Rapid Sequence Intubation
- 1.5mg/kg ABW IV immediately after sedation (maximum 150mg).

Suggested Formulations:
- Generic: 20 mg/mL (10 mL) [contains methylparaben]
- Quelicin: 20 mg/mL (10 mL)

Tetracaine

Indications/Contraindications:
- Topical anesthetic

Eye & Dental
- 2 drops to affected eye; repeat every 5 minutes as needed.

Suggested Formulations:
- Generic: 0.5% (1 mL, 2 mL, 15 mL)

Tranexamic Acid (TXA)

Indications/Contraindications:
- Evidence of significant trauma
- Evidence of severe bleeding
- The presence of hemodynamic instability **AND**
- The injury occurred within the past 3 hours in patients greater than 15 years old without a known allergy to TXA, without an isolated head injury, who has not or will not be receiving factors and is not pregnant with a viable fetus.

Tranexamic Acid Protocol
- Mix 1 gram TXA in 100mL .9% NaCl or LR. Infuse over approximately 10 minutes IV or IO. Notify receiving facility of TCA administration prior to arrival.

Vecuronium

Paralytic Agent

Indications/Contraindications:
- Long-acting non-depolarizing paralytic agent.
- Avoid in patients with chronic neuromuscular disease (e.g., muscular dystrophy).

Rapid Sequence Intubation
- 0.1 mg/kg IBW IV.

Suggested Formulations:
- Generic: 10 mg (1 ea); 20 mg (1 ea)
Pediatric Color Coded Appendix

Weight 3-5 Kg (Avg 4.0 Kg)

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th>Equipment</th>
<th>Defibrillation</th>
<th>Normal Saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate: 120-150</td>
<td>ET Tube: 2.5 - 3.5</td>
<td>8 J, 15 J</td>
<td>40-80 ml</td>
</tr>
<tr>
<td>Respiration: 24-48</td>
<td>Blader Size: 0 - 1</td>
<td>2 J, 4 J</td>
<td></td>
</tr>
<tr>
<td>BP Systolic: 70 (+/-25)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Albuterol**: 2.5 mg
- **Amiodarone**: 20 mg
- **Atropine- Bradycardia**: 0.08 mg
- **- Organophosphate Poison**: 0.2 mg
- **Calcium Chloride**: 80 mg
- **Calcium Gluconate**: 400 mg
- **Dexamethasone**: 2 mg
- **Dextrose 10%**: 20 mL
- **Diazepam (IV)**: 1 mg
- **(Rectal)**: 2.0 mg
- **Diphenhydramine**: HOLD
- **Epinephrine**: 0.04 mg
- **Epinephrine 1:100 Nebulized**: 3 mg
- **Epinephrine 1:1000 IM**: 0.15 mg
- **Fentanyl**: HOLD
- **Glucagon**: 0.5 mg
- **Glucose Oral**: 1 tube
- **Hydrocortisone**: 280 mg
- **Ibuprofen**: HOLD
- **Ipratropium w/ albuterol**: 500 mcg
- **Lidocaine**: 1 mg
- **- Cardiac Arrest**: 4 mg
- **- Intraosseous**: 2 mg
- **Lorazepam**: 0.4 mg
- **Magnesium Sulfate**: 0.2 mg
- **- RAD**: 150 mg
- **- Torsades**: 200 mg
- **Methylprednisolone**: 1mg/kg
- **- 2mg/kg**: 4 mg
- **- 8 mg**: 4 mg
- **Midazolam (0.1mg/kg)**: 0.4 mg
- **Morphine Sulfate**: 0.4 mg
- **Naloxone – IN**: 1 mg
- **Ondansetron - IV**: 0.4 mg
- **- 8 J**: 4 mg
- **- 15 J**: 4 mg
- **Cardioversion**: 2 J, 4 J

<table>
<thead>
<tr>
<th>Normal Saline</th>
<th>40-80 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen: 60 mg</td>
<td></td>
</tr>
<tr>
<td>Adenosine:</td>
<td></td>
</tr>
<tr>
<td>1st Dose- 0.4 mg</td>
<td></td>
</tr>
<tr>
<td>Repeat Dose- 0.8 mg</td>
<td></td>
</tr>
<tr>
<td>Activated Charcoal**: 6.3 grams</td>
<td></td>
</tr>
</tbody>
</table>

Weight 6-7 Kg (Avg 6.5 Kg)

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th>Equipment</th>
<th>Defibrillation</th>
<th>Normal Saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate: 120-125</td>
<td>ET Tube: 3.5</td>
<td>10 J, 20 J</td>
<td>65-130 ml</td>
</tr>
<tr>
<td>Respiration: 24-32</td>
<td>Blader Size: 1</td>
<td>2 J, 5 J</td>
<td></td>
</tr>
<tr>
<td>BP Systolic: 85 (+/-25)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Albuterol**: 2.5 mg
- **Amiodarone**: 30 mg
- **Atropine- Bradycardia**: 0.12 mg
- **- Organophosphate Poison**: 0.320 mg
- **Calcium Chloride**: 120 mg
- **Calcium Gluconate**: 600 mg
- **Dexamethasone**: 4 mg
- **Dextrose 10%**: 35 mL
- **Diazepam (IV)**: 1 mg
- **(Rectal)**: 3 mg
- **Diphenhydramine**: HOLD
- **Epinephrine**: 0.06 mg
- **Epinephrine 1:100 Nebulized**: 3 mg
- **Epinephrine 1:1000 IM**: 0.15 mg
- **Fentanyl**: HOLD
- **Glucagon**: 0.5 mg
- **Glucose Oral**: 1 tube
- **Hydrocortisone**: 450 mg
- **Ibuprofen**: HOLD
- **Ipratropium w/ albuterol**: 500 mcg
- **Lidocaine**: 1 mg
- **- Cardiac Arrest**: 6 mg
- **- Intraosseous**: 3 mg
- **Lorazepam**: 0.65 mg
- **Magnesium Sulfate**: 0.2 mg
- **- RAD**: 250mg
- **- Torsades**: 300 mg
- **Methylprednisolone**: 1mg/kg
- **- 2mg/kg**: 8 mg
- **- 12 mg**: 8 mg
- **Midazolam (0.1mg/kg)**: 0.6 mg
- **Morphine Sulfate**: 0.6 mg
- **Naloxone – IN**: 1 mg
- **Ondansetron - IV**: 0.6mg
- **- 8 J**: 4 mg
- **- 15 J**: 4 mg
- **Cardioversion**: 2 J, 5 J

<table>
<thead>
<tr>
<th>Normal Saline</th>
<th>65-130 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen: 97.5 mg</td>
<td></td>
</tr>
<tr>
<td>Adenosine:</td>
<td></td>
</tr>
<tr>
<td>1st Dose- 0.65 mg</td>
<td></td>
</tr>
<tr>
<td>Repeat Dose- 1.3 mg</td>
<td></td>
</tr>
<tr>
<td>Activated Charcoal**: 6.3 grams</td>
<td></td>
</tr>
</tbody>
</table>

Weight 8-9 Kg (Avg 8.5 Kg)

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th>Equipment</th>
<th>Defibrillation</th>
<th>Normal Saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate: 120</td>
<td>ET Tube: 3.5 - 4.0</td>
<td>20 J, 40 J</td>
<td>85-170 ml</td>
</tr>
<tr>
<td>Respiration: 24-32</td>
<td>Blader Size: 1</td>
<td>5 J, 9 J</td>
<td></td>
</tr>
<tr>
<td>BP Systolic: 92 (+/-25)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Albuterol**: 2.5 mg
- **Amiodarone**: 40 mg
- **Atropine- Bradycardia**: 0.18 mg
- **- Organophosphate Poison**: 0.420 mg
- **Calcium Chloride**: 180 mg
- **Calcium Gluconate**: 800 mg
- **Dexamethasone**: 5 mg
- **Dextrose 10%**: 45 mL
- **Diazepam (IV)**: 2 mg
- **(Rectal)**: 4 mg
- **Diphenhydramine**: HOLD
- **Epinephrine**: 0.08 mg
- **Epinephrine 1:1000 Nebulized**: 3 mg
- **Epinephrine 1:1000 IM**: 0.15 mg
- **Fentanyl**: HOLD
- **Glucagon**: 0.5 mg
- **Glucose Oral**: 1 tube
- **Hydrocortisone**: 450 mg
- **Ibuprofen**: HOLD
- **Ipratropium w/ albuterol**: 500 mcg
- **Lidocaine**: 1 mg
- **- Cardiac Arrest**: 8 mg
- **- Intraosseous**: 4 mg
- **Lorazepam**: 0.8 mg
- **Magnesium Sulfate**: 0.2 mg
- **- RAD**: 350 mg
- **- Torsades**: 400 mg
- **Methylprednisolone**: 1mg/kg
- **- 2mg/kg**: 8 mg
- **- 16 mg**: 8 mg
- **Midazolam (0.1mg/kg)**: 0.8 mg
- **Morphine Sulfate**: 0.8 mg
- **Naloxone – IN**: 1 mg
- **Ondansetron - IV**: 0.8 mg
- **- 4 mg**: 4 mg
- **Pralidoxime IV**: 128 mg
- **Proparacaine**: 2 drops
- **Sodium Bicarbonate**: 13 mEq
- **Tretacaine**: 2 drops

<table>
<thead>
<tr>
<th>Normal Saline</th>
<th>85-170 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen: 127.5 mg</td>
<td></td>
</tr>
<tr>
<td>Adenosine:</td>
<td></td>
</tr>
<tr>
<td>1st Dose- 0.85 mg</td>
<td></td>
</tr>
<tr>
<td>Repeat Dose- 1.7 mg</td>
<td></td>
</tr>
<tr>
<td>Activated Charcoal**: 8.3 grams</td>
<td></td>
</tr>
</tbody>
</table>
Pediatric Color Coded Appendix

Weight 10-11 Kg (Avg 10.5 Kg)

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>115-120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respirations</td>
<td>22-30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP Systolic</td>
<td>96 (+/-30)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ET Tube:</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade Size:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defibrillation</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Defibrillator:</td>
<td>20 J, 40 J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardioversion:</td>
<td>5 J, 10 J</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal Saline</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>160 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenosine:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Dose-</td>
<td>1.05 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat Dose-</td>
<td>2.1 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activated Charcoal</td>
<td>10.4 grams</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weight 12-14 Kg (Avg 13 Kg)

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>110-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respirations</td>
<td>20-28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP Systolic</td>
<td>100 (+/-30)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ET Tube:</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade Size:</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defibrillation</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Defibrillator:</td>
<td>30 J, 50 J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardioversion:</td>
<td>6 J, 15 J</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal Saline</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>195 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenosine:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Dose-</td>
<td>1.3 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat Dose-</td>
<td>2.6 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activated Charcoal</td>
<td>12.5 grams</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weight 15-18 Kg (Avg 16.5 Kg)

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>100 - 115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respirations</td>
<td>20-26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP Systolic</td>
<td>100 (+/-20)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ET Tube:</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade Size:</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defibrillation</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Defibrillator:</td>
<td>30 J, 70 J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardioversion:</td>
<td>8 J, 15 J</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal Saline</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>247.5 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenosine:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Dose-</td>
<td>1.65 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat Dose-</td>
<td>3.3 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activated Charcoal</td>
<td>16.7 grams</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pediatric Color Coded Appendix

Weight 19-22 Kg (Avg 20.75 Kg)

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th>Heart Rate: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration: 20-24</td>
<td></td>
</tr>
<tr>
<td>BP Systolic: 100 (+/-15)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th>ET Tube: 5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade Size: 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defibrillation</th>
<th>Defibrillation: 40 J, 85 J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovversion: 10 J, 20 J</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal Saline</th>
<th>205-410 ml</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medications</th>
<th>Doses/Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuterol</td>
<td>2.5 mg</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>105 mg</td>
</tr>
<tr>
<td>Atropine-Bradycardia</td>
<td>0.4 mg</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>400 mg</td>
</tr>
<tr>
<td>Calcium Gluconate</td>
<td>2 grams</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>10 mg</td>
</tr>
<tr>
<td>Dextrose 10%</td>
<td>105 mL</td>
</tr>
<tr>
<td>Diazepam (IV)</td>
<td>4 mg</td>
</tr>
<tr>
<td>(Rectal)</td>
<td>10 mg</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>30 mg</td>
</tr>
<tr>
<td>Epinephrine 1:10,000</td>
<td>0.2 mg</td>
</tr>
<tr>
<td>Epinephrine 1:1000 Nebulized</td>
<td>3 mg</td>
</tr>
<tr>
<td>Epinephrine 1:1000 IM</td>
<td>0.15 mg</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>20 mcg</td>
</tr>
<tr>
<td>Glucagon</td>
<td>1 mg</td>
</tr>
<tr>
<td>Glucose Oral</td>
<td>1 tube</td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>40 mg</td>
</tr>
<tr>
<td>Hydroxocobalamin</td>
<td>1450 mg</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>205 mg</td>
</tr>
</tbody>
</table>

Weight 24-30 Kg (Avg 27 Kg)

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th>Heart Rate: 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration: 18-22</td>
<td></td>
</tr>
<tr>
<td>BP Systolic: 105 (+/-15)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th>ET Tube: 6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade Size: 2-3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defibrillation</th>
<th>Defibrillation: 50 J, 100 J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovversion: 15 J, 30 J</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal Saline</th>
<th>250-500 ml</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medications</th>
<th>Doses/Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuterol</td>
<td>2.5 mg</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>140 mg</td>
</tr>
<tr>
<td>Atropine-Bradycardia</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>540 mg</td>
</tr>
<tr>
<td>Calcium Gluconate</td>
<td>2 grams</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>10 mg</td>
</tr>
<tr>
<td>Dextrose 10%</td>
<td>135 mL</td>
</tr>
<tr>
<td>Diazepam (IV)</td>
<td>5 mg</td>
</tr>
<tr>
<td>(Rectal)</td>
<td>13 mg</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>40 mg</td>
</tr>
<tr>
<td>Epinephrine 1:10,000</td>
<td>0.22 mg</td>
</tr>
<tr>
<td>Epinephrine 1:1000 Nebulized</td>
<td>3 mg</td>
</tr>
<tr>
<td>Epinephrine 1:1000 IM</td>
<td>0.3 mg</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>25 mcg</td>
</tr>
<tr>
<td>Glucagon</td>
<td>1 mg</td>
</tr>
<tr>
<td>Glucose Oral</td>
<td>1 tube</td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>50 mg</td>
</tr>
<tr>
<td>Hydroxocobalamin</td>
<td>1890 mg</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>270 mg</td>
</tr>
</tbody>
</table>

Weight 32-40 Kg (Avg 36 Kg)

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th>Heart Rate: 85-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration: 16-22</td>
<td></td>
</tr>
<tr>
<td>BP Systolic: 115 (+/-20)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th>ET Tube: 6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade Size: 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defibrillation</th>
<th>Defibrillation: 60 J, 150 J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovversion: 15 J, 30 J</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal Saline</th>
<th>250-500 ml</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medications</th>
<th>Doses/Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuterol</td>
<td>2.5 mg</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>180 mg</td>
</tr>
<tr>
<td>Atropine-Bradycardia</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>720 mg</td>
</tr>
<tr>
<td>Calcium Gluconate</td>
<td>2 grams</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>10 mg</td>
</tr>
<tr>
<td>Dextrose 10%</td>
<td>180 mL</td>
</tr>
<tr>
<td>Diazepam (IV)</td>
<td>7 mg</td>
</tr>
<tr>
<td>(Rectal)</td>
<td>18 mg</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>50 mg</td>
</tr>
<tr>
<td>Epinephrine 1:10,000</td>
<td>0.36 mg</td>
</tr>
<tr>
<td>Epinephrine 1:1000 Nebulized</td>
<td>3 mg</td>
</tr>
<tr>
<td>Epinephrine 1:1000 IM</td>
<td>0.3 mg</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>40 mcg</td>
</tr>
<tr>
<td>Glucagon</td>
<td>1 mg</td>
</tr>
<tr>
<td>Glucose Oral</td>
<td>1 tube</td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>70 mg</td>
</tr>
<tr>
<td>Hydroxocobalamin</td>
<td>2520 mg</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>360 mg</td>
</tr>
</tbody>
</table>

Appendix 3 (Page 3 of 3) 2015
Pediatric Epinephrine: 1mg in 1000mL = 1mcg/mL

<table>
<thead>
<tr>
<th>Dose (kg)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5kg</td>
<td>mL/min</td>
<td>mL/hr</td>
<td>mL/min</td>
<td>mL/hr</td>
<td>mL/min</td>
<td>mL/hr</td>
<td>mL/min</td>
<td>mL/hr</td>
<td>mL/min</td>
</tr>
<tr>
<td>0.1</td>
<td>1.05</td>
<td>61</td>
<td>1.30</td>
<td>78</td>
<td>1.65</td>
<td>99</td>
<td>2.08</td>
<td>125</td>
<td>2.70</td>
</tr>
<tr>
<td>0.2</td>
<td>2.10</td>
<td>126</td>
<td>2.60</td>
<td>156</td>
<td>3.30</td>
<td>198</td>
<td>4.15</td>
<td>249</td>
<td>5.40</td>
</tr>
<tr>
<td>0.3</td>
<td>3.15</td>
<td>189</td>
<td>3.90</td>
<td>234</td>
<td>4.95</td>
<td>297</td>
<td>6.23</td>
<td>374</td>
<td>8.10</td>
</tr>
<tr>
<td>0.4</td>
<td>4.20</td>
<td>252</td>
<td>5.20</td>
<td>312</td>
<td>6.60</td>
<td>396</td>
<td>8.30</td>
<td>498</td>
<td>10.80</td>
</tr>
<tr>
<td>0.5</td>
<td>5.25</td>
<td>315</td>
<td>6.50</td>
<td>390</td>
<td>8.25</td>
<td>495</td>
<td>10.38</td>
<td>623</td>
<td>13.50</td>
</tr>
<tr>
<td>0.6</td>
<td>6.30</td>
<td>378</td>
<td>7.80</td>
<td>468</td>
<td>9.90</td>
<td>594</td>
<td>12.45</td>
<td>747</td>
<td>16.20</td>
</tr>
<tr>
<td>0.7</td>
<td>7.35</td>
<td>441</td>
<td>9.10</td>
<td>546</td>
<td>11.55</td>
<td>693</td>
<td>14.53</td>
<td>872</td>
<td>18.90</td>
</tr>
<tr>
<td>0.8</td>
<td>8.40</td>
<td>504</td>
<td>10.40</td>
<td>624</td>
<td>13.20</td>
<td>792</td>
<td>16.60</td>
<td>996</td>
<td>21.60</td>
</tr>
<tr>
<td>0.9</td>
<td>9.45</td>
<td>567</td>
<td>11.70</td>
<td>702</td>
<td>14.85</td>
<td>891</td>
<td>18.68</td>
<td>1121</td>
<td>24.30</td>
</tr>
<tr>
<td>1</td>
<td>10.50</td>
<td>630</td>
<td>13.00</td>
<td>780</td>
<td>16.50</td>
<td>990</td>
<td>20.75</td>
<td>1245</td>
<td>27.00</td>
</tr>
</tbody>
</table>

Pediatric Norepinephrine 4mg in 1000mL = 4mcg/mL

<table>
<thead>
<tr>
<th>Dose (kg)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5kg</td>
<td>mL/min</td>
<td>mL/hr</td>
<td>mL/min</td>
<td>mL/hr</td>
<td>mL/min</td>
<td>mL/hr</td>
<td>mL/min</td>
<td>mL/hr</td>
<td>mL/min</td>
</tr>
<tr>
<td>0.1</td>
<td>0.26</td>
<td>16</td>
<td>0.33</td>
<td>20</td>
<td>0.41</td>
<td>25</td>
<td>0.52</td>
<td>31</td>
<td>0.68</td>
</tr>
<tr>
<td>0.2</td>
<td>0.40</td>
<td>24</td>
<td>0.53</td>
<td>32</td>
<td>0.65</td>
<td>39</td>
<td>0.83</td>
<td>50</td>
<td>1.04</td>
</tr>
<tr>
<td>0.3</td>
<td>0.55</td>
<td>30</td>
<td>0.81</td>
<td>49</td>
<td>1.06</td>
<td>64</td>
<td>1.31</td>
<td>79</td>
<td>1.63</td>
</tr>
<tr>
<td>0.4</td>
<td>0.70</td>
<td>42</td>
<td>1.14</td>
<td>80</td>
<td>1.48</td>
<td>95</td>
<td>1.89</td>
<td>117</td>
<td>2.38</td>
</tr>
<tr>
<td>0.5</td>
<td>0.86</td>
<td>58</td>
<td>1.30</td>
<td>98</td>
<td>1.79</td>
<td>124</td>
<td>2.28</td>
<td>157</td>
<td>2.93</td>
</tr>
<tr>
<td>0.6</td>
<td>1.02</td>
<td>78</td>
<td>1.70</td>
<td>132</td>
<td>2.30</td>
<td>176</td>
<td>2.89</td>
<td>213</td>
<td>3.63</td>
</tr>
<tr>
<td>0.7</td>
<td>1.20</td>
<td>98</td>
<td>2.14</td>
<td>185</td>
<td>2.83</td>
<td>233</td>
<td>3.51</td>
<td>263</td>
<td>4.50</td>
</tr>
<tr>
<td>0.8</td>
<td>1.38</td>
<td>120</td>
<td>2.65</td>
<td>201</td>
<td>3.54</td>
<td>276</td>
<td>4.60</td>
<td>338</td>
<td>5.90</td>
</tr>
<tr>
<td>0.9</td>
<td>1.56</td>
<td>150</td>
<td>3.25</td>
<td>255</td>
<td>4.75</td>
<td>315</td>
<td>6.50</td>
<td>371</td>
<td>8.25</td>
</tr>
</tbody>
</table>

Appendix 4
NH Adult Drip Rate Reference

Appendix 5

The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.

<table>
<thead>
<tr>
<th>Adult Epinephrine 1mg in 1000 mL = 1mcg/mL</th>
<th>Adult Norephinephrine 4mg in 1000mL = 4mcg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-10mcg/min</td>
<td>1-30 mcg/min</td>
</tr>
<tr>
<td>Dose</td>
<td>Dose</td>
</tr>
<tr>
<td>ml/min</td>
<td>ml/hr</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adult Epinephrine 1mg in 500 mL = 2 mcg/mL</th>
<th>Adult Norephinephrine 4mg in 500 mL = 8mcg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-10mcg/min</td>
<td>1-30 mcg/min</td>
</tr>
<tr>
<td>Dose</td>
<td>Dose</td>
</tr>
<tr>
<td>ml/min</td>
<td>ml/hr</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>5</td>
<td>0.63</td>
</tr>
<tr>
<td>10</td>
<td>1.25</td>
</tr>
<tr>
<td>15</td>
<td>1.88</td>
</tr>
<tr>
<td>20</td>
<td>2.50</td>
</tr>
<tr>
<td>25</td>
<td>3.13</td>
</tr>
<tr>
<td>30</td>
<td>3.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adult Epinephrine 1mg in 250mL = 4mcg/mL</th>
<th>Adult Nitroglycerin 50mg in 250 = 200mcg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-400mcg/min</td>
<td>5-400mcg/min</td>
</tr>
<tr>
<td>Dose</td>
<td>Dose</td>
</tr>
<tr>
<td>ml/min</td>
<td>ml/hr</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>0.025</td>
</tr>
<tr>
<td>10</td>
<td>0.05</td>
</tr>
<tr>
<td>15</td>
<td>0.075</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
</tr>
<tr>
<td>50</td>
<td>0.25</td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>300</td>
<td>1.5</td>
</tr>
<tr>
<td>400</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adult Nitroglycerin 100mg in 250 = 400mcg/mL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5-400mcg/min</td>
<td></td>
</tr>
<tr>
<td>Dose</td>
<td></td>
</tr>
<tr>
<td>ml/min</td>
<td>ml/hr</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>0.013</td>
</tr>
<tr>
<td>10</td>
<td>0.025</td>
</tr>
<tr>
<td>15</td>
<td>0.038</td>
</tr>
<tr>
<td>20</td>
<td>0.05</td>
</tr>
<tr>
<td>50</td>
<td>0.125</td>
</tr>
<tr>
<td>100</td>
<td>0.25</td>
</tr>
<tr>
<td>200</td>
<td>0.5</td>
</tr>
<tr>
<td>300</td>
<td>0.75</td>
</tr>
<tr>
<td>400</td>
<td>1</td>
</tr>
</tbody>
</table>
The New Hampshire Bureau of EMS has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.

Adult Epinephrine 1mg in 1000 mL = 1mcg/mL

<table>
<thead>
<tr>
<th>Dose</th>
<th>ml/min</th>
<th>ml/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>240</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>300</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>360</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>420</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>480</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>540</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>600</td>
</tr>
</tbody>
</table>

Adult Epinephrine 1mg in 500 mL = 2 mcg/mL

<table>
<thead>
<tr>
<th>Dose</th>
<th>ml/min</th>
<th>ml/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>210</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>240</td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>270</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>300</td>
</tr>
</tbody>
</table>

Adult Epinephrine 1mg in 250mL = 4mcg/mL

<table>
<thead>
<tr>
<th>Dose</th>
<th>ml/min</th>
<th>ml/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>1.25</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>1.75</td>
<td>105</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>9</td>
<td>2.25</td>
<td>135</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>150</td>
</tr>
</tbody>
</table>

Adult Norepinephrine 4mg in 1000mL = 4mcg/mL

<table>
<thead>
<tr>
<th>Dose</th>
<th>ml/min</th>
<th>ml/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>1.25</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>2.50</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td>3.75</td>
<td>225</td>
</tr>
<tr>
<td>20</td>
<td>5.00</td>
<td>300</td>
</tr>
<tr>
<td>25</td>
<td>6.25</td>
<td>375</td>
</tr>
<tr>
<td>30</td>
<td>7.50</td>
<td>450</td>
</tr>
</tbody>
</table>

Adult Norepinephrine 4mg in 500 mL = 8mcg/mL

<table>
<thead>
<tr>
<th>Dose</th>
<th>ml/min</th>
<th>ml/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.13</td>
<td>7.5</td>
</tr>
<tr>
<td>5</td>
<td>0.63</td>
<td>37.5</td>
</tr>
<tr>
<td>10</td>
<td>1.25</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>1.88</td>
<td>112.5</td>
</tr>
<tr>
<td>20</td>
<td>2.50</td>
<td>150</td>
</tr>
<tr>
<td>25</td>
<td>3.13</td>
<td>187.5</td>
</tr>
<tr>
<td>30</td>
<td>3.75</td>
<td>225</td>
</tr>
</tbody>
</table>

Adult Nitroglycerin 50mg in 250 mL = 200mcg/mL

<table>
<thead>
<tr>
<th>Dose</th>
<th>ml/min</th>
<th>ml/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.025</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>0.05</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>0.075</td>
<td>4.5</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>0.25</td>
<td>15</td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>300</td>
<td>1.5</td>
<td>90</td>
</tr>
<tr>
<td>400</td>
<td>2</td>
<td>120</td>
</tr>
</tbody>
</table>

Adult Nitroglycerin 100mg in 250 mL = 400mcg/mL

<table>
<thead>
<tr>
<th>Dose</th>
<th>ml/min</th>
<th>ml/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.013</td>
<td>0.75</td>
</tr>
<tr>
<td>10</td>
<td>0.025</td>
<td>1.5</td>
</tr>
<tr>
<td>15</td>
<td>0.038</td>
<td>2.25</td>
</tr>
<tr>
<td>20</td>
<td>0.05</td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>0.125</td>
<td>7.5</td>
</tr>
<tr>
<td>100</td>
<td>0.25</td>
<td>15</td>
</tr>
<tr>
<td>200</td>
<td>0.5</td>
<td>30</td>
</tr>
<tr>
<td>300</td>
<td>0.75</td>
<td>45</td>
</tr>
<tr>
<td>400</td>
<td>1</td>
<td>60</td>
</tr>
</tbody>
</table>

Appendix 5
ADULT Scope of Practice

<table>
<thead>
<tr>
<th>Airway Management</th>
<th>EMR</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chest Tube Maintenance</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cleared, Opened, Heimlich</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BiPAP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CPAP</td>
<td></td>
<td></td>
<td>*</td>
<td>X</td>
</tr>
<tr>
<td>Cricothyrotomy – Percutaneous</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cricothyrotomy – Surgical (Bougie Assisted)</td>
<td></td>
<td></td>
<td></td>
<td>Prerequisite</td>
</tr>
<tr>
<td>Endotracheal Intubation</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Endotracheal Suctioning</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nasogastric Tube</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Nasopharyngeal Airway</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nasotracheal Intubation</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Nebulizer Treatment</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Needle Decompression</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Oral Suctioning</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Oropharyngeal Airway</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Oxygen Administration</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pulse Oximetry</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rapid Sequence Intubation</td>
<td></td>
<td></td>
<td></td>
<td>Prerequisite</td>
</tr>
<tr>
<td>Supraglottic Airways</td>
<td>*</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tracheostomy Maintenance</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ventilator Operation</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

X Skill allowed under protocol and taught in the National Education Standards.

** Skill allowed under protocol after completion of a scope of practice module.

Δ Skills allowed under protocol for licensed AEMTs; NOT allowed for EMT-Intermediates.

Revised 09/07/17
Appendix 6
ADULT Scope of Practice

<table>
<thead>
<tr>
<th>Medication Administration Route</th>
<th>EMR</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Injector</td>
<td>Provider Protection</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Blood Products</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Endotracheal</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Inhalation</td>
<td>MDI</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Intramuscular</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Intraosseous</td>
<td></td>
<td>*</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Intravenous</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Intravenous Pump</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Oral</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Intranasal</td>
<td></td>
<td>*</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rectal</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Subcutaneous</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sublingual</td>
<td>Assist</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Vascular Access

<table>
<thead>
<tr>
<th>Vascular Access</th>
<th>EMR</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Draw</td>
<td></td>
<td>*</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Blood Glucose Analysis</td>
<td></td>
<td>*</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Central Line Maintenance</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>External Jugular</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Peripheral Venous Access</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Intraosseous - Adult</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* Skill allowed under protocol and taught in the National Education Standards.

* Skill allowed under protocol after completion of a scope of practice module.

∆ Skills allowed under protocol for licensed AEMTs; NOT allowed for EMT-Intermediates.

Revised 09/07/17

Appendix 6
ADULT Scope of Practice

<table>
<thead>
<tr>
<th>Cardiac Management</th>
<th>EMR</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of 12 Lead ECG</td>
<td></td>
<td>*</td>
<td>*</td>
<td>X</td>
</tr>
<tr>
<td>Application of 3 or 4 lead ECG</td>
<td></td>
<td>*</td>
<td>*</td>
<td>X</td>
</tr>
<tr>
<td>CPR - Cardiopulmonary Resuscitation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Defibrillation - AED</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Defibrillation - Manual</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Interpretation of 12 Lead ECG</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Interpretation of 3 or 4 lead Vfib/Vtach, Asystole, PEA*</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Synchronized Cardioversion</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Transcutaneous Pacing</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Skill allowed under protocol and taught in the National Education Standards.

* *Skill allowed under protocol after completion of a scope of practice module.*

△ *Skills allowed under protocol for licensed AEMTs; NOT allowed for EMT-Intermediates.*

Revised 09/07/17

Appendix 6
PEDIATRIC Scope of Practice

<table>
<thead>
<tr>
<th>Airway Management</th>
<th>EMR</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Cleared, Opened, Heimlich</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CPAP</td>
<td></td>
<td></td>
<td>*</td>
<td>x</td>
</tr>
<tr>
<td>Endotracheal Intubation</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Endotracheal Suctioning</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Nasogastric Tube</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Nasopharyngeal Airway</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nebulizer Treatment</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Needle Decompression</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Oral Suctioning</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Oropharyngeal Airway</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Oxygen Administration</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pulse Oximetry</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Supraglottic Airways</td>
<td></td>
<td>*</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tracheostomy Maintenance</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ventilator Operation</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

X Skill allowed under protocol and taught in the National Education Standards.

* Skill allowed under protocol after completion of a scope of practice module.

△ Skills allowed under protocol for licensed AEMTs; NOT allowed for EMT-Intermediates.

Revised 09/07/17 Appendix 6
PEDIATRIC Scope of Practice

<table>
<thead>
<tr>
<th>Medication Administration Route</th>
<th>EMR</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Injector</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Endotracheal</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Inhalation</td>
<td>MDI</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Intramuscular</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Intraosseous</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Intravenous</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Intravenous Pump</td>
<td></td>
<td></td>
<td>Interfacility transfers</td>
<td>X</td>
</tr>
<tr>
<td>Oral</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rectal</td>
<td></td>
<td></td>
<td>Assist Diastat</td>
<td>Assist Diastat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Subcutaneous</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vascular Access</th>
<th>EMR</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Draw</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood Glucose Analysis</td>
<td>*</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Central Line Access</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Intraosseous</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Peripheral Venous Access</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

* Skill allowed under protocol and taught in the National Education Standards.
* Skill allowed under protocol after completion of a scope of practice module.
△ Skills allowed under protocol for licensed AEMTs; NOT allowed for EMT-Intermediates.

Revised 09/07/17
Appendix 6
PEDIATRIC Scope of Practice

<table>
<thead>
<tr>
<th>Cardiac Management</th>
<th>EMR</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of 12 Lead ECG</td>
<td></td>
<td>*</td>
<td>*</td>
<td>X</td>
</tr>
<tr>
<td>Application of 3 or 4 Lead ECG</td>
<td></td>
<td>*</td>
<td>*</td>
<td>X</td>
</tr>
<tr>
<td>CPR - Cardiopulmonary Resuscitation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Defibrillation - AED</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Defibrillation - Manual</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Interpretation of 12 Lead ECG</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Interpretation of 3 or 4 lead</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Synchronized Cardioversion</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Transcutaneous Pacing</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

* Skill allowed under protocol and taught in the National Education Standards.

* Skill allowed under protocol after completion of a scope of practice module.

△ Skills allowed under protocol for licensed AEMTs; NOT allowed for EMT-Intermediates.

Revised 09/07/17

Appendix 6
ADULT & PEDIATRIC Scope of Practice

<table>
<thead>
<tr>
<th>OTHER SKILLS</th>
<th>EMR</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Spinal Assessment</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Burn Care</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cervical Spinal Immobilization</td>
<td>Manual Stabilization</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Childbirth</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cold Pack</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Extrication</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Eye Irrigation (Morgan Lens)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Hot Pack</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Immunization</td>
<td></td>
<td></td>
<td>X</td>
<td>Prerequisite</td>
</tr>
<tr>
<td>Restraints - Pharmacological</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Restraints - Physical</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Spinal Motion Restriction</td>
<td>Manual Stabilization</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Splinting</td>
<td>Manual Stabilization</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Splinting - Traction</td>
<td>Manual Stabilization</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stroke Scale</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wound Care - Occlusive Dressing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wound Care Pressure Bandage</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Skill allowed under protocol and taught in the National Education Standards.

Skill allowed under protocol after completion of a scope of practice module.

△Skills allowed under protocol for licensed AEMTs; NOT allowed for EMT-Intermediates.

Revised 09/07/17 Appendix 6
HIPAA PERMITS DISCLOSURE TO HEALTH PROFESSIONALS INVOLVED IN THE PATIENT'S CARE

Provider Orders for Life-Sustaining Treatment (POLST)

This is a Physician/APRN Order Sheet. First follow these orders, then contact physician or APRN. These medical orders are based on the patient's current medical condition and preferences. Any section not completed does not invalidate the form and implies full treatment for that section.

<table>
<thead>
<tr>
<th>Section A</th>
<th>Cardiopulmonary Resuscitation (CPR): Patient has no pulse and/or is not breathing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check One</td>
<td>□ YES, Attempt CPR</td>
</tr>
<tr>
<td></td>
<td>□ NO, Do Not Attempt Resuscitation/DNR Follow orders in B, C and D when not in cardiopulmonary arrest. This will constitute a DNR order, and no separate DNR Order will be required.</td>
</tr>
</tbody>
</table>

Interventions:

□ Full Treatment – Includes treatment described below, use intubation, advanced airway interventions, mechanical ventilation, and cardioversion as indicated. Transfer to hospital if indicated. Includes intensive care. **Treatment Plan: Full treatment including life support measures in the intensive care unit.**

□ Selective Interventions – Includes treatments described below. Use medical treatment, IV fluids and cardiac monitor as indicated. Do not use intubation, advanced airway interventions, or mechanical ventilation. Transfer to hospital level of treatment to meet need, if indicated. Avoid intensive care. **Treatment Plan: Provide basic medical treatments.**

□ Comfort-focused Care – Use medication by any route, positioning, wound care, oxygen, and other measures to relieve pain and discomfort. Patient prefers no transfer to hospital for life-sustaining treatment. Transfer only if comfort needs cannot be met in current location. **Treatment Plan: Maximize comfort through symptom management.**

Other Orders (e.g. time limited treatment, hospice evaluation, etc.):

Section C

Medically Administered Fluids and Nutrition. Oral fluids and nutrition must be offered if medically feasible and consistent with patient's goals of care.

□ IV fluids long-term for hydration and nutrition
□ IV fluids for a defined trial period
□ No IV fluids for hydration and nutrition

□ Feeding tube long-term
□ Feeding tube for a defined trial period
□ No feeding tube

Section D

□ Antibiotics if life prolonging
□ No antibiotics
□ Antibiotics only if likely to contribute to comfort

Section E

The basis for these orders is:

□ Patient
□ DPOAH agent
□ Court-appointed guardian
□ Parent(s) of minor
□ Surrogate
□ Other (specify):

This order has been discussed with the patient named above (or agent, guardian, or parent named below), who has given consent as evidenced by signature below.

Documentation of discussion is located in medical chart at:

Date of Discussion:

Mandatory Signature of Patient or Activated DPOAH, Guardian, Surrogate or Parent of Minor, and Physician/APRN

<table>
<thead>
<tr>
<th>Name (Print)</th>
<th>Signature (Mandatory)</th>
<th>Date</th>
<th>Relationship (write “self” if patient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician/APRN Name: (Print)</td>
<td>Physician/APRN Phone Number:</td>
<td>Physician/APRN State License Number:</td>
<td>Date: (Mandatory)</td>
</tr>
</tbody>
</table>

Physician/APRN Signature: (Mandatory)
HIPAA PERMITS DISCLOSURE TO HEALTH PROFESSIONALS INVOLVED IN THE PATIENT’S CARE
Information for Patient Named on this form – Patient’s Name (print):

This voluntary form records your preferences for life-sustaining treatment in your current state of health. It can be reviewed and updated by you and your health care professional at any time if your preferences change. If you are unable to make your own health care decisions, the orders should reflect your preferences as best understood by your DPOAH, Guardian or by your written Advance Care Plan.

(Optional) Contact Information for DPOAH, Guardian or Parent of Minor

<table>
<thead>
<tr>
<th>Name:</th>
<th>Relationship:</th>
<th>Phone Number:</th>
<th>Address:</th>
</tr>
</thead>
</table>

(Optional) Health Care Professional Preparing Form

<table>
<thead>
<tr>
<th>Name:</th>
<th>Preparer Title:</th>
<th>Phone Number:</th>
</tr>
</thead>
</table>

Date Prepared:

Directions for Health Care Professionals

Completing POLST
- Encourage completion of an Advance Directive.
- Should reflect current preferences of patient with serious illness or frailty whose death within the next year would not surprise you.
- Verbal/phone orders are acceptable with follow-up signature by physician/APRN in accordance with facility policy.
- Use original form if patient is transferred/discharged.

Reviewing POLST
This POLST should be reviewed periodically and if:
- The patient is transferred from one care setting or care level to another, or
- There is a substantial change in the patient’s health status, or
- The patient’s treatment preferences change.

Voiding POLST
- A patient with capacity, or the activated DPOAH or Court appointed Guardian of a patient without capacity, can void the form and request alternative treatment.
- Draw line through sections A through E and write “VOID” in large letters if POLST is replaced or becomes invalid if in a Health Care facility.
- At any time a patient at home or agent or guardian may revoke this POLST by destroying it.

Review of this POLST Form

<table>
<thead>
<tr>
<th>Review Date</th>
<th>Reviewer</th>
<th>Location of Review</th>
<th>Signature</th>
</tr>
</thead>
</table>

Review Outcome: ☐ No Change ☐ Form Voided ☐ New form completed

Review Date	Reviewer	Location of Review	Signature

Review Outcome: ☐ No Change ☐ Form Voided ☐ New form completed

Review Date	Reviewer	Location of Review	Signature

Review Outcome: ☐ No Change ☐ Form Voided ☐ New form completed

Review Date	Reviewer	Location of Review	Signature

Review Outcome: ☐ No Change ☐ Form Voided ☐ New form completed

ORIGIINAL TO ACCOMPANY PATIENT IF TRANSFERRED/DISCHARGED.
FAX OR PHOTOCOPY SHALL BE REGARDED AS VALID IF CONSISTENT WITH FACILITY OR AGENCY POLICY.