GRANITE SPLITTING TOOLS AND TECHNIQUES

By about 1800, stonecutters in many parts of New England had perfected the basic techniques of finishing and shaping granite. These craftsmen were not only able to split large slabs and posts from boulders, but had also learned to use hammers and chisels to shape the stone to a wide variety of forms, including steps, thresholds, curbs, lintels, columns, watering troughs, and rainwater basins.

In the years just before 1830, a new granite splitting method was introduced. Each method of splitting granite leaves distinctive marks at the edge of the stone, and these marks reveal whether a given piece of granite was quarried or split before or after about 1830—useful knowledge in dating a building or a stone object.

Prior to about 1830, the procedure for splitting granite entailed the cutting of a line of shallow slots in the face of the stone, using a tool called a cape chisel, struck with a heavy hammer. Small, flat steel wedges were placed between shims of sheet iron and driven into these slots, splitting the stone. The new splitting method of circa 1830 used a “plug drill,” which had a V-shaped point and was rotated slightly between each blow of the hammer, creating a round hole two or three inches deep.

Into this hole were placed a pair of half-round steel shims or “feathers,” and between these was driven a wedge or “plug” which exerted outward pressure and split the stone. The advantage of the “plug-and-feathers” method of splitting was the greater depth within the stone at which the wedges exerted their pressure, thus allowing larger pieces to be split more accurately.
The new splitting technology seems to have spread rather rapidly through the granite quarrying centers of New England, although one is likely to find evidence of both old and new methods being used concurrently in stonework of the 1830s, especially in rural areas. The technique employed on a given stone can usually be seen on the split face, and provides some aid in dating granite masonry. The old, flat-wedge method is marked by a series of slot-like depressions which extend inward an inch or so from the edges of the split stone. The plug-and-feathers method leaves a row of rounded holes, two or three inches deep and usually about six inches apart.

When seen on the surface of a stone that was prepared for splitting but never split, these slots or holes appear as shown below:

![Diagram of slot and hole marks](image)

Flat slots made by cape chisel Round holes made by plug drill

The use of the plug drill in combination with the plug-and-feathers provided greater force and control in splitting granite. Until the introduction of the new technique, most granite for buildings and posts was split from surface boulders that had been strewn across the New England landscape at the retreat of the glaciers. Such stone had been transported by the ice from many points of origin, and each boulder challenged the stonecutter with different grain and behavior when split.

The introduction of the plug drill and plug-and-feathers seems to have enhanced stonecutters’ ability to quarry granite from ledges. Ledge stone was more uniform in nature and predictable in behavior than granite split from surface boulders. With the opening of early quarries at ledges in Quincy, Chelmsford, and Rockport, Massachusetts; Concord, New Hampshire; and many locations in Maine, Vermont, and Rhode Island, New England began to assume its prominent place in the American and international granite industry.

James L. Garvin
State Architectural Historian