Bridge Design Manual

Chapter 12

Overview of Existing Bridge Section, Bridge Inspection, and Load Ratings

January 2015 – v 2.0
(Revised June 2019)
Chapter 12 Overview of Existing Bridge Section, Bridge Inspection, and Load Ratings

12.1 Existing Bridge Section Overview
- 12.1.1 Organization, Roles, and Responsibilities

12.2 Bridge Inspection Program Overview
- 12.2.1 Background
- 12.2.2 Purpose
- 12.2.3 Evaluation of Bridge Condition
- 12.2.4 Coordination for Bridge Inspections and Providing Bridge Data
- 12.2.5 Bridge Inspection Reports
- 12.2.6 Bridge Records (Files)

12.3 Load Ratings Overview
- 12.3.1 Introduction and Background

References

Appendix A
- Appendix 12.2-A1 Sample Inspection Report
Page intentionally left blank.
This chapter provides a brief overview of the NHDOT Existing Bridge Section, bridge inspection program, and bridge load rating requirements. For a more thorough description of these efforts, please refer to the NHDOT Bridge Inspection Manual, which can be found on the NHDOT Bridge Design - Document Library web page at: https://www.nh.gov/dot/org/projectdevelopment/bridgedesign/documents/NHDOTBridgeInspectionManual.pdf

12.1 Existing Bridge Section Overview

12.1.1 Organization, Roles, and Responsibilities

The Existing Bridge Section of the Bridge Design Bureau is comprised of engineers and inspectors, each with defined roles and responsibilities, including:

- Administering the Bridge Inspection Program and performing inspections for all publically-owned bridges in the State in accordance with state and federal requirements
- Maintaining, updating, and reporting bridge inventory data using the Department’s Bridge Management System
- Assuring the accuracy and appropriateness of load ratings and that appropriate weight limit postings are implemented as necessary
- Responding to emergency situations involving bridges to ensure public safety

Bridge Inspection Teams, each with two Bridge Inspectors, are assigned specific regions of the state in which they perform bridge inspections. The inspection data is first recorded on laptop computers and is then transferred to supervisory personnel for review and QC/QA, prior to updating the Bridge Management System database.

An organizational chart for the Existing Bridge Section is shown below:
Page intentionally left blank.
12.2 Bridge Inspection Program Overview

12.2.1 Background

Inspection of existing bridges is one of the most important activities performed by Bridge Design personnel as it directly affects the safety of the traveling public. These actions determine and evaluate the condition of all state and municipal bridges to ensure that they are able to safely carry all legal loads in accordance with any load postings and/or weight restrictions in effect. Primarily, the Program ensures prompt discovery of any deterioration, defect, or structural deficiency of bridge elements that could be hazardous to the traveling public.

In general, each State is required to conduct biennial (every two years) inspections of bridges carrying traffic on public highways, and to record structure inventory and appraisal data in a specified format. Requirements for the inspection, evaluation, and load rating of the nation’s bridges are defined by the National Bridge Inspection Standards (NBIS) in the Code of Federal Regulations, 23 CFR § 650C.

The NBIS stipulates that each state highway department perform inspections, prepare reports, and determine load ratings in accordance with the AASHTO Manual for Bridge Evaluation (MBE) and the FHWA Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges (Coding Guide). The Existing Bridge Section of the Bridge Design Bureau has established a Bridge Inspection Program to satisfy the NBIS requirements.

The primary responsibilities of a bridge inspector are to ensure public safety and to protect the public’s investment in these structures. Any defects identified that present an immediate hazard to the public or that threaten the integrity of the bridge are immediately reported and repair actions are initiated to address the issue until a long term solution is developed and implemented.

12.2.2 Purpose

The Bridge Inspection Program, administered by the Existing Bridge Section of the Bridge Design Bureau, follows established procedures for bridge inspection, evaluation, load rating, and reporting. The outcome of this effort, which assesses the condition and safety of each bridge, also determines the available load capacity (i.e., weight limit postings) and maintenance needs of structures in the NHDOT Bridge Inventory. This inventory also includes various other non-highway bridges owned and maintained by the State (e.g., various bypassed historic structures, pedestrian bridges, and railroad bridges).

When referencing bridges in New Hampshire it is important to note that a “bridge”, as defined in RSA 234.2 Bridge Defined, is any span 10-ft. (3-m) or greater, and that according to FHWA regulations a “bridge” is defined as any span greater than 20-ft. (6-m). The NHDOT Bridge Inventory includes data and inspection records of all publically owned structures carrying highway traffic and having a span of 10-ft. (3-m) or greater, thus meeting both bridge definitions.

The objectives of NHDOT’s bridge inspection, evaluation, and load rating program are to:

- Fulfill the requirements of the National Bridge Inspection Standards (NBIS);
- Ensure prompt discovery of any deterioration, defect, or structural deficiency that could be hazardous to the traveling public;
- Maintain an up-to-date inventory that records the condition of all qualifying state-owned bridges carrying traffic on Class I, II, and III public highways as defined in RSA 229:5 by conducting periodic inspections as required by RSA 234:22;
• Maintain an up-to-date inventory that records the condition of all qualifying municipality-owned bridges carrying traffic on Class IV and V public highways as defined in RSA 229:5 by conducting periodic inspections as required by RSA 234:23;

• Maintain an up-to-date inventory that records the condition of other bridges for which the State feels it has a vested interest. These are determined on a case-by-case basis and may include state-owned pedestrian and railroad bridges, bridges constructed using Department funds that are not owned by the State, portions of bridges not owned by the State that cross Class I, II, and III highways maintained by NHDOT, and other miscellaneous structures considered important by NHDOT to the transportation network;

• Establish and maintain the information required by the AASHTO Bridge Management Software (BrM);

• Determine the extent of minor deterioration to assist with planning routine maintenance and repair work;

• Determine the extent of major deterioration for guiding decisions relative to bridge rehabilitation and replacement; and;

• Provide information for re-evaluation of live load capacity to guide posting and closure decisions.

Bridges on Class VI highways are specifically excluded from inspection efforts and from the bridge inventory. New Hampshire State law (RSA 234:22 and 234:23) requires inspection of bridges on Class I, II, III, IV, and V Highways only, specifically omitting Class VI Highways. Additionally, Federal regulations apply only to bridges on “public roads” which are:

1. Under the jurisdiction of a public authority, and
2. Maintained by a public authority, and
3. Open to public travel.

Therefore, the Bridge Design Bureau does not inspect bridges on Class VI Highways.

12.2.3 Evaluation of Bridge Condition

The condition evaluation efforts for each bridge establish the physical and functional condition of the bridge components, including the extent of deterioration and any other defects that are identified. The results of this evaluation are the basis for load rating, maintenance actions, and preservation, repair, and rehabilitation programs. In addition, as bridge inspections are repeated, a continuous history of bridge condition over time can be established for each bridge and for the bridge population as a whole, thereby providing bridge condition trends that are the basis for establishing goals and developing system-wide bridge programs and projects.

The condition rating for each major bridge element (e.g. deck, superstructure, substructure, or culvert) is evaluated in accordance with the 0-9 numeric coding system per FHWA requirements. For bridges crossing over waterways, additional assessment data of waterway adequacy, channel condition, and scour are also collected and are based on a similar numeric coding system.

Quality Control (QC) and Quality Assurance (QA) procedures for all bridge inspection efforts, as well as routine and specialized training of inspection personnel, are also important aspects of the NHDOT Bridge Inspection Program. These actions ensure that bridge inspections are consistent, accurate, thorough, and are completed in accordance with all applicable state and federal laws and regulations by an inspection staff that is well trained in the most up-to-date methods and requirements.
The condition of each bridge directly affects the safe load capacity of the bridge. It is often the case that severely deteriorated bridges have significantly reduced safe load capacities. Load ratings are determined by an engineer by evaluating available plans, calculations, shop drawings, records, and bridge inspection data as needed. The effects of all deterioration, damage, or other defects are taken into consideration to ensure that the load rating is based on the current condition of the bridge.

12.2.4 Coordination for Bridge Inspections and Providing Bridge Data

During various aspects of bridge inspection efforts it is necessary to coordinate with both internal and external organizations, agencies, and partners to meet responsibilities and achieve program goals.

A. Internal Coordination

Generally involves other NHDOT Bureaus regarding the use of equipment and staff in support of inspection activities. The Bureaus and Inspection Tasks are listed below:

- Bridge Maintenance: Scheduling the use of “spider” staging and support personnel; Design and develop emergency repairs to state bridges by Bridge Maintenance staff;
- Mechanical Services: Scheduling the use of “Snooper” under-bridge inspection equipment and support personnel; Scheduling maintenance/repair work for bridge inspection vehicles;
- Traffic Bureau: Coordinate the repair, replacement, or removal of bridge posting signs for weight limits, vertical clearance restrictions, and other bridge-related signage;
- Highway and Turnpike Maintenance Bureaus: Respond to reports of damage to bridges;
- Commissioners’ Office: Provide reports of bridge inspection data and respond to requests for bridge condition data and projections for development of budgetary needs, transportation improvement programs, and specific projects to address deficiencies;
- Transportation Systems, Management, & Operations (TSMO): Report bridge conditions and emergencies that could affect overall vehicular travel on the statewide transportation network;
- Planning & Community Assistance Bureau: Provide bridge condition data for development of the 10-Year Plan; Assist with issues involving municipal bridges;
- Other NHDOT Bureaus: As needed.

B. External Coordination

Generally involves federal agencies, other state departments, and transportation partners, such as:

- FHWA: Reporting NH bridge inspection data for National Bridge Inventory; Ensure compliance with applicable federal laws, regulations, and requirements;
- NH Department of Natural and Cultural Resources, Division of Parks & Recreation: Scheduling inspection of NHDCR-owned bridges and provide inspection data;
- NH Department of Safety: Schedule officers and cruisers for traffic control during specific bridge inspections;
- NH Department of Justice, Attorney General’s Office, Transportation & Construction Bureau: Provide bridge data and testimony as needed in support of Department objectives;
- NH Municipalities: Provide inspection results and required load postings for municipally-owned bridges; Respond to requests involving bridge issues of local concern;
Chapter 12 Overview of Existing Bridge Section, Bridge Inspection, and Load Ratings

- Neighboring states: Coordinate with the transportation departments of adjoining states (MA, ME, & VT) to ensure consistent reporting of the inspection data from shared border bridges to the National Bridge Inventory (NBI);
- Railroads: Schedule inspections of bridges involving railroads for right-of-way access and to ensure that proper railroad flagging is provided;
- Engineering Consultants: Schedule and complete structural and underwater bridge inspection actions not performed by NHDOT Bridge Inspection personnel; Provide prior bridge inspection data as needed;

12.2.5 Bridge Inspection Reports

In accordance with federal regulations, specific data is collected during bridge inspection efforts and submitted to FHWA by March 15 of each calendar year to update the National Bridge Inventory (NBI). The NBI contains current and historical inspection data on the more than 600,000 bridges (federal definition) in the United States. States usually collect additional bridge data not specifically required by FHWA but nonetheless considered necessary for their individual Bridge Inspection Programs. There is no federal requirement for states to prepare or submit individual Bridge Inspection Reports and each state independently develops Reports containing pertinent inspection data suitable for their needs.

NHDOT Bridge Inspection Reports compile and condense specific data recorded during bridge inspection efforts, and present it in a consistent format for reference by all users. Although an Inspection Report does not contain all data collected during bridge inspections, it does include bridge data that is generally needed to understand the bridge configuration, current condition, and required postings. All data collected, both current and historical, is retained in the NHDOT Bridge Management System database. It is important to note that this includes data for all federal definition (spans 20-ft. [6-m] or greater) and state definition (spans 10-ft. [3-m] or greater) bridges in New Hampshire, both state and municipally owned.

During inspection activities, photos are taken of any areas of concern to record their specific conditions at the time of inspection. This usually includes areas where deterioration or other concerns are present, such as impact damage or scour action. When current photos and data are compared with historical photos and data of the same concern or area of the bridge, estimates can be made of its rate of progression so that corrective actions can be scheduled. Photos are also taken of the roadway approaches and elevation views. These supplemental photos are not taken during every inspection and are generally only updated when changes have occurred at these locations.

The Bridge Inspection Report documents the observations made during the field inspection, the condition state of the bridge elements, and the physical description of the bridge. See Appendix 12.2-A1 for a sample Bridge Inspection Report.

The following lists the data noted on a NHDOT Bridge Inspection Report:

- Bridge identification numbers (State and Federal)
- Location and crossing
- Date of inspection
- Name of inspection Team members
- Bridge Owner
- Recommended postings
- Vertical and horizontal clearances
- Condition of major bridge elements
• Structure type and materials
• Bridge dimensions
• Plan file location
• Year built/rebuilt
• Detour length
• Bridge service (classification)
• Element details
• Element states and notes
 o Element notes are limited to 4,000-characters dedicated to describing the condition states of each element based on observations and measurements in the field. Each element also can be documented for several potential defects and protection of sub-elements, each with its own note section of 4,000-characters. Inspectors describe each specific element and concisely record the necessary information leading to a proper consideration of the condition states of each element
• Bridge notes
 o Bridge notes are limited to a 4,000-character length, which includes specific items not covered by the Element or Inspection Notes.
• Inspection notes
 o Inspection Notes are limited to a 4,000-character length, which includes specific items not covered by the Element or Bridge Notes.
• Previous inspection notes
• Approach and roadway notes
• Inspection history
• Inspection frequency

12.2.6 Bridge Records (Files)

This Section provides an overview of the NHDOT Bureau of Bridge Design policy for maintaining bridge records (files) to meet Federal Highway Administration (FHWA) requirements and to effectively manage physical assets. The Existing Bridge Section prepares and maintains the bridge records as noted in Section 12.2.2.

This policy applies to the following bridge inventory:

• All publicly owned and maintained bridges carrying highway traffic. Federal definition bridges are structures having spans 20-ft. (6-m.) or greater, while State-definition bridges are structures having spans 10-ft. (3-m.) or greater. (Refer to Section 1.4 for more specifics);
• Various other non-highway bridges owned and maintained by the State (e.g. various bypassed historic structures, pedestrian, and railroad bridges);
• Bridges or portions thereof serving other uses and crossing highways that are open to public travel; and
• Various other bridges for which the State has established a vested interest.

All bridge records shall meet the requirements of Section 2 of the AASHTO Manual for Bridge Evaluation (MBE). The MBE emphasizes three main points for maintaining a bridge file:

• Bridge owners should maintain a complete, accurate, and current file of each bridge under their jurisdiction.
Chapter 12 Overview of Existing Bridge Section, Bridge Inspection, and Load Ratings

- A bridge record always contains the current and sometimes the cumulative information about an individual bridge.
- A bridge file may be stored electronically, on paper, or a combination of both.

A. Components and Location of Bridge Files

Bridge files contain bridge information, inspection reports, and notations of any actions taken to address findings of deficiencies. Bridge files maintain relevant maintenance and inspection data to allow the assessment of current bridge conditions. The general components of a bridge file are as follows:

- Bridge inspection report
- Bridge capacity summary sheet (Form 4) bearing the NH P.E. seal and signature of the engineer responsible for the load rating.
- Bridge capacity calculations and diagrams
- Inspection photos
- Hydraulic report (if applicable)
- Bridge contract plans
- Shop drawings
- Scour Plans of Action (POA) (if applicable)
- Fracture critical member identification and inspection report (if applicable)
- Underwater (diving) inspection report (if applicable)
- Complex bridge inspection report (if applicable)
- Scour critical inspections (if applicable)
- Bridge maintenance records

The Bureau of Bridge Design maintains both a hard copy and an electronic copy of inspection records to comply with the minimum NBIS requirements.

1) Paper Files

The hard copies (paper files) contain the bridge capacity summary sheet, inspection reports, sketches, and inspection photos, and are located in filing cabinets in the Bureau of Bridge Design. The inspection reports are cumulative, meaning that all historic as well as current data must be kept in the bridge file. The paper files are organized according to ownership, town, and bridge number.

2) Electronic Files

As noted above, a bridge file can contain a vast amount of additional data and documents that cannot all be stored as paper files. Therefore, the bridge files are also stored electronically as a supplement to the paper files. The electronic bridge files have a backup system intended to protect the electronic data for the life of the structures. The electronic bridge file is also cumulative and includes all the components listed above, except for the inspection photos. The electronic files are located on the Department’s V:\drive and are organized according to town, Bridge Inspection Maintenance Folder, and bridge number (e.g., V:\Town\Albany\BridgeInspMaint\030_150). The subfolders shall be listed as follows:

- Plans
 - Plan year subfolder
- Shop Drawings
 - Plan year subfolder
- Bridge Inspection Files
 - Year subfolder
Chapter 12 Overview of Existing Bridge Section, Bridge Inspection, and Load Ratings

- Bridge Capacity Form, calculations, diagrams
- Scour POA and Scour Critical inspections
- Fracture Critical, Underwater, Complex Bridge, Scour Critical Inspection Report
- Bridge Maintenance Files
 - Year subfolder

The electronic bridge file maintains cumulative contract bridge plans and selected shop drawings, including: structural steel, expansion joints, bearings, prestressed/precast elements, and fabricator designs. It also maintains cumulative bridge maintenance records.

The Bureau of Bridge Maintenance maintains a cumulative electronic file of all in-house repairs completed. In-house drawings and specifications supplementing each repair are also retained in the electronic folder “Bridge Maintenance files”.

3) Inspection Photos

The electronic inspection photos are stored separately in the Bridge Inspection Photo Reviewer (BIPR) database located at: N:\Databases\B18-BridgeDesign\BIPR.mdb.

4) Bridge Inventory Database

The Bureau of Bridge Design maintains a database that records contract plans completed on state managed structures. This database correlates contract number and bridge number for structures maintained by the NHDOT. This database is located at: N:\Databases\B18-BridgeDesign\BridgeFileNumber.mdb.

B. Access to Bridge File

The paper bridge files are publically available during working hours at the NHDOT Concord office, Bureau of Bridge Design. Upon completion of the review and QC/QA processes of the inspection reports, copies of municipal bridge inspection reports are sent to the municipality.

The electronic bridge inspection reports are available on the “NH Bridges” map located on the Bridge Design website located at: https://www.nh.gov/dot/org/projectdevelopment/bridgedesign/documents.htm

The map has “bubble” markers for each bridge in the state. Select the appropriate bubble marker to obtain bridge information, then select “Bridge Inspection Report” to obtain the latest inspection report. The inspection photos are currently not available for on-line viewing but will be available at a future time.

All other documents in the electronic file for each bridge can be provided upon receipt of a request submitted to the Bureau of Bridge Design, Existing Bridge Section.
Page intentionally left blank.
12.3 Load Ratings Overview

12.3.1 Introduction and Background

Load rating of new and existing bridges is a critical activity as it directly corresponds to the safety of the traveling public. The ability of each bridge to safely carry all anticipated loads must be determined and evaluated so that any required load restrictions can be posted and imposed.

The National Bridge Inspection Standards (NBIS) require that a load rating be calculated and kept on file for each bridge in the National Bridge Inventory. The load rating calculations are a required component of the bridge file and are updated when the condition of the bridge changes to reflect the safe load capacity of the “As-Inspected” structure in its current condition. Therefore, load ratings are updated for those structures where available live load capacity has been reduced because of deterioration, damage, an increase in dead load, or structural modifications. Updating the load rating of a structure that experiences an increase in capacity is optional, subject to approval by the Chief, Existing Bridge Section.

Load rating of bridges is completed in accordance with the AASHTO Manual for Bridge Evaluation (MBE). Appendices in the MBE provide examples of load rating different types of structures with accepted load rating methods per AASHTO specifications, e.g., Allowable Stress Rating (ASR), Load Factor Rating (LFR), and Load and Resistance Factor Rating (LRFR), or other appropriate rational and professionally accepted criteria. All bridge load ratings submitted to the NHDOT shall bear the stamp of a Professional Engineer (PE) licensed in the state of New Hampshire. Rating calculations shall be performed by engineers familiar with the principles of structural analysis and load rating methods relative to the structure type under evaluation. The engineering knowledge and skill necessary to properly evaluate the load capacity of bridges varies with the complexity of the bridge.

Interpretation of load posting requirements and load rating results requires experience and judgment, and thus, each analysis is reviewed by a qualified engineer. Good judgment on the part of the rating engineer is prudent for recognizing special situations where routine, simplified analysis procedures are inadequate, and more sophisticated analysis methods are required. In addition, the reviewing engineer also evaluates the load rating decisions regarding material strengths, effects of deterioration and defects, stability, etc. The reviewing engineer may also recommend additional inspection and/or testing as part of the load rating process.

Please refer to the NHDOT Bridge Inspection Manual for information on the following additional topics:

- General Load Rating / Re-Rating Guidelines and Load Rating Revision Criteria
- Selection of Members for Analysis
- Load Rating Methods and Computer Software
- Bridges with Unknown Structural Components
- Load Posting Requirements
- Format of Load Rating Package (including Form 4)
- Oversize/Overweight (OS/OW) Permits
- Documentation of Losses
- Field Investigation Forms for Rating Evaluations
References

2. Washington State Department of Transportation, *Bridge Inspection Manual M 36-64*. Retrieved from https://www.wsdot.wa.gov/Publications/Manuals/M36-64.htm
Page intentionally left blank.
SAMPLE INSPECTION REPORT

The electronic bridge inspection reports are available on the “NH Bridges” map located on the Bridge Design website located at:

The map has bubble markers for each bridge in the state. Hit on the bubble marker to obtain bridge information and hit on the “Bridge Inspection Report” to obtain the latest inspection report. The inspection photos are currently not available for on-line viewing but will be available at a future time.
Appendix 12.2-A1

Sample Inspection Report

New Hampshire Department of Transportation
Bridge Inspection Report
NBI Structure Number: 005201520018800

Date of Inspection: 11/29/2018
Date Report Sent: 12/11/2018
Owner: NHDOT
Bridge Inspection Group: D-Team
Bridge Maintenance Crew: 05

Existing Bridge Section
Bureau of Bridge Design
Concord 152/108
I-393, US 4, US202
over
I-93

Interstate Bridge Number: 045

Recommended Postings:
Weight: No Posting Required
Width: Not Required
Primary Height Sign Recommendation: None
Optional Centerline Height Sign Required: None

Clearances:
Over: 99.99
(Foot)
Under: 16.88
Route: 99.99

Condition:
Red List Status: State Red List
Deck: 4 Poor
Superstructure: 6 Satisfactory
Substructure: 4 Poor
Culvert: N/A (NBI)
Sufficiency Rating: 29%
NBI Status: Structurally Deficient
Bridge Rail: Substandard
Rail Transition: Substandard
Bridge Approach Rail: Meets Standards
Approach Rail Ends: Substandard

Structure Type and Materials:
Number of Main Spans: 2
Number of Approach Spans: 0
Main Span Material and Design Type:
Steel Multiple Beam

NH Bridge Type: IB-C (I-Beams w/ Concrete Deck)
Deck Type: Concrete, Cast in Place
Weighing Surface: Bituminous
Membrane: Other
Deck Protection: None
Curb Reveal: 7 in
Plan Location: 6-2-3, 6B-3-2
Year Built/Rebuilt: 1958/1981
Detour Length: 3.0 mi

Bridge Dimensions:
Length Maximum Span: 80.0 ft
Left Curb/Sidewalk Width: 0.7 ft
Width Curb to Curb: 80.0 ft
Approach Roadway Width: 80.0 ft (W/Shoilders)

NHDOT 908 Inspection
Concord 152/108

Printed on: 12/12/2018 5:51:58 AM
Page 1 of 5
Bridge Inspection Report

New Hampshire Department of Transportation

Bridge Service:
- Type of Service on Bridge: Highway
- Type of Service Under: Highway
- Lanes on Bridge: 4
- Lanes Under: 4
- AADT: 41,300
- Percent Trucks: 8%
- Year of AADT: 2013
- Future AADT: 61,124
- Year of Future AADT: 2038

Federal or State Definition Bridge: Fed-Definition Bridge

National Highway System: NHS Roadway on Bridge

Roadway Functional Class: Urban Interstate

New Hampshire Bridge Tier: 1

Eligibility for the National Register of Historic Places: Not Eligible

Traffic Direction: Two-way traffic

National Bridge Inventory (NBI) Appraisal Ratings:
- Deck Secrity: 9 - Above Desirable Criteria
- Underclearance: 5 - Above Min. Tolerable
- Approach Alignment: 8 - Equal Desirable Criteria
- Structural Evaluation: 2 - Tolerable, Replacement
- Channel/Channel Protection: N - Not Applicable (NBI)
- Waterway Adequacy: N - Not Applicable (NBI)
- Bridge Scour Critical Status: N - Not Over Waterway
- Riprap Condition: N - Not Applicable
- Debris Present: unknown
- Channel Notes:

NHDOT 008 Inspection

Concord 152/108

Printed on: 12/12/2018 5:51:58 AM

Page 2 of 2
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Material Notes and Condition Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Reinforced Concrete Deck</td>
<td>CURBS- CRACKED, SPALLED. UNDERSIDE OF DECK- FINE CRACKS, LEAKING, SPALLING AND REBAR EXPOSED.</td>
</tr>
<tr>
<td>L 510</td>
<td>Wearing Surfaces</td>
<td>ASPHALT- NO DAMAGE.</td>
</tr>
<tr>
<td>L 1000</td>
<td>Exposed Rebar</td>
<td>SPAN #1 MEDIUM SPALLS IN BAYS #11 AND #12. SPAN #2 LARGE SPALLS IN BAYS #10 AND #11.</td>
</tr>
<tr>
<td>L 1120</td>
<td>Efflorescence/Rust Staining</td>
<td>EFFLORESCENCE AND RUST STAINING UNDER CURBS AND JOINT.</td>
</tr>
<tr>
<td>107</td>
<td>Steel Open Grider Beam</td>
<td>BEAMS- PAINT PEELING, RUST FORMATION ON BOTTOM FLANGES. LIGHT CORROSION WITH MINOR SECTION LOSS TO BEAM ENDS UNDER JOINT.</td>
</tr>
<tr>
<td>L 515</td>
<td>Steel Protective Coating</td>
<td>RUST HAS INITIATED ON ALL BEAMS, BEAM ENDS UNDER JOINT MINOR SECTION LOSS DUE TO LEAKAGE.</td>
</tr>
<tr>
<td>L 1000</td>
<td>Corrosion</td>
<td>MEDIUM SPALL AND REBAR EXPOSED ON #4.</td>
</tr>
<tr>
<td>L 1090</td>
<td>Exposed Rebar</td>
<td>SPAN #1, COLUMN #4 MEDIUM SPALL AT CENTER IN A 1 X 2 AREA, WEST.</td>
</tr>
<tr>
<td>215</td>
<td>Reinforced Concrete Abutment!</td>
<td>ABUTMENTS- CRACKS, MODERATE SPALLS AND REBAR EXPOSED. BACKWALLS AND BRIDGE BEAMS- CRACKS AND LIGHT SPALLS. WINGS- ALL LOOSE GRANITE FACING HAS BEEN REMOVED.</td>
</tr>
<tr>
<td>L 1090</td>
<td>Exposed Rebar</td>
<td>SPAN #1 TWO MEDIUM SPALLS AT CENTER, WEST. SPAN #2 MEDIUM SPALL AT CENTER, EAST.</td>
</tr>
<tr>
<td>234</td>
<td>Reinforced Concrete Pier Cap</td>
<td>REPAIRED BY BRIDGE MAINTENANCE.</td>
</tr>
<tr>
<td>301</td>
<td>Pourable Joint Seal</td>
<td>FULLY ADHERED.</td>
</tr>
<tr>
<td>302</td>
<td>Compression Joint Seal</td>
<td>JOINT- GLAND TORN, RIPPED, AND FAILED. HEAVY LEAKING ON PIER/CAP.</td>
</tr>
<tr>
<td>L 2330</td>
<td>Seal Damage</td>
<td>SEVERAL AREAS HOLED.</td>
</tr>
<tr>
<td>311</td>
<td>Movable Bearing</td>
<td>ANCHOR BOLTS BENT AND LIFTED UP AT PIER. RUSTED UNDER LEAKAGE.</td>
</tr>
<tr>
<td>L 515</td>
<td>Steel Protective Coating</td>
<td>RUSTED UNDER LEAKAGE.</td>
</tr>
<tr>
<td>313</td>
<td>Fixed Bearing</td>
<td>RUSTED UNDER LEAKAGE.</td>
</tr>
<tr>
<td>L 515</td>
<td>Steel Protective Coating</td>
<td>RUSTED UNDER LEAKAGE.</td>
</tr>
<tr>
<td>330</td>
<td>Metal Bridge Railing</td>
<td>DAMAGED ON NORTH AND POST BROKEN ON SOUTHEAST.</td>
</tr>
<tr>
<td>331</td>
<td>Reinforced Concrete Bridge Railing</td>
<td>SCALING AND MINOR SPALLS.</td>
</tr>
</tbody>
</table>
Bridge Inspection Report

NBD Structure Number: 00621520010600

Concord 152/108

Element States (see disclaimer below)

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Quantity</th>
<th>Units</th>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
<th>State 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Reinforced Concrete Deck</td>
<td>13,958</td>
<td>sq.ft</td>
<td>96%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>L 510</td>
<td>Wearing Surfaces</td>
<td>---</td>
<td>---</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>L 1120</td>
<td>Exposed Repair</td>
<td>95</td>
<td>sq.ft</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>107</td>
<td>Efflorescence/Rein Staining</td>
<td>133</td>
<td>sq.ft</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>L 515</td>
<td>Steel Protective Coating</td>
<td>2,330</td>
<td>ft</td>
<td>82%</td>
<td>17%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>L 1000</td>
<td>Corrosion</td>
<td>414</td>
<td>each</td>
<td>0%</td>
<td>67%</td>
<td>3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Bridge Notes:
Several beams were out of plumb 1/2 to 1 inch at pier, noted 1991.
ADDED TO STATE RED LIST ON 5/18/2011 DUE TO SOFFIT AND SUBSTRUCTURE. SOME LOOSE GRANITE FACINGS ON WINGSPUDDLE GRANITE FACINGS OUTWARDS WITH VOID BETWEEN CORNER OF NORTHEAST ABUTMENT AND GRANITE FACINGS.
11/17/2016, 3/28/2017
3/2/19/Pier OVPP, 11/29/18 - PIER CAP AND COLUMN #1 REPAIRED, ALL LOOSE GRANITE FACINGS HAVE BEEN REMOVED BY BRIDGE MAINTENANCE.

Inspection Notes: 11/29/2018
NLI inspection comments -
DECK: ASPHALT-NO DAMAGE, CURBS-CRACKED, SPALLED. UNDERSIDE OF DECK- FINE CRACKS, LEAKING, SILLING AND REBAR EXPOSED, RAIL-DAMAGED ON NORTH AND ON SOUTH. POST BROKEN ON SOUTH. JOINT SEAL-HELD AREAS CAUSING LEAKAGE OVER PIER.
SUPERSTRUCTURE: BEAMS PAINT PEELING, RUST FORMATION ON BOTTOM FLANGES. LIGHT CORROSION WITH MINOR SECTION LOSS ON BEAM ENDS UNDER JOINT SUBSTRUCTURE: ABUTMENTS CRACKS, MODERATE SPALLS AND REBAR EXPOSED. BACKWALLS AND BRIDGE SEATS CRACKS, LIGHT SPALLS, WINGS-LOOSE GRANITE FACINGS HAS BEEN REMOVED ON ALL FOUR CORNERS. COLUMNS CRACKS, MEDIUM SPALL WITH REBAR EXPOSED #4. GAP- SEVERAL REPAIRED AREAS.

PICTURES: D223-
40. WEST SIDE OF PIER, REPAIRED,
41. COLUMN #1, REPAIRED.
42. EAST SIDE OF PIER, REPAIRED.

NHDOT 006 Inspection

Concord 152/108

Printed on: 12/12/2018 5:51:58 AM
Page 4 of 5
Bridge Inspection Report

Previous Inspection Notes:
- 03/12/2018
- B3 B inspection comments -
 - Deck: Asphalt-Pavement, Curbs-Cracked, Spalled, Underside of Deck- Fine Cracks, Leaking, Spalling and Rebar exposed, Rail damaged on North and South, Post broken on Southeast, Joint seal-holed areas causing leakage over pier.
 - Substructure: Beams-Paint peeling, rust formation on bottom flanges, light corrosion with minor section loss to beam ends under joint.
 - Substructure: Abutments-Cracks, moderate spalls and rebar exposed, backwalls and bridge seats-Cracks, light spalls, Wings loose granite facing has been removed on all four corners, Columns-cracks, medium to large spalls, rebar exposed on #1 and #4, Cap Cracks, medium to large delaminations, spalls and rebar exposed, spalled under bearing #1, Span #1.

Approach and Roadway Notes:
- Approach Asphalt, No damage, Approach W-Beam, Minor Damage.

Inspection History

<table>
<thead>
<tr>
<th>Inspection Date</th>
<th>Inspector Initials</th>
<th>Inspection Type/Performer</th>
<th>Major Element Ratings</th>
<th>Red List</th>
<th>Posting</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/29/2018</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/12/2018</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/17/2018</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/21/2018</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/11/2016</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/18/2015</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/18/2014</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/21/2014</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/01/2013</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/01/2013</td>
<td>KLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/25/2013</td>
<td>KLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/21/2012</td>
<td>KLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/03/2012</td>
<td>KLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/23/2012</td>
<td>KLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/20/2011</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/18/2010</td>
<td>NKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/29/2009</td>
<td>KLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/22/2009</td>
<td>KLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/20/2008</td>
<td>KLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/06/2003</td>
<td>RLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/13/2002</td>
<td>RLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/13/1999</td>
<td>RLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/01/1999</td>
<td>RLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/01/1995</td>
<td>RLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/01/1993</td>
<td>RLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/01/1991</td>
<td>RLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inspection Frequency (mo.):

<table>
<thead>
<tr>
<th>NB</th>
<th>Bem</th>
<th>FCM</th>
<th>U/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>