Plaistow Commuter Rail Extension Study

Public Informational Meeting
October 9, 2014
Location: Plaistow Town Hall
AGENDA

- Welcome & Introductions
- Overview & Background of the Study
- Environmental Assessment Process
- Alternative Development
 - Site Options
 - Site Options Screening
- Alternative Analysis Process
 - 3 Site Alternatives
 - Land Use & Economics
 - Noise & Vibration
- Next steps
PROJECT ADVISORY COMMITTEE

PAC MEMBERS
- Town of Plaistow – Sean Fitzgerald; (Alternate) Tim Moore
- Town of Atkinson — David Harrigan; (Alternate) Robert J. Clark
- Merrimack Valley Planning Commission — Todd Fontanella
- Rockingham Planning Commission — Cliff Sinnott
- Massachusetts Bay Transportation Authority — Ron Morgan
- Northern New England Passenger Rail Authority — Jim Russell
- Pan Am Railways — Cynthia S. Scarano
- City of Haverhill — Mayor’s Office

NHDOT TEAM
- Shelley Winters

HDR ENGINEERING TEAM
- Ron O’Blenis, John Weston, Stefanie McQueen, Kris Erikson, Katie Rougeot, Jamie Paine
OVERVIEW OF THE STUDY

- **GOAL:** Evaluate the extension of the MBTA Haverhill Line commuter rail service from Haverhill, MA to Plaistow, NH. Locate a new layover facility and station.
BACKGROUND/HISTORY

1990s
Potential Rail Extension Identified and Studied

2008
MBTA Involved Plaistow about locating Layover Facility and Station

2010
MBTA Obtained rights to operate on Pam Am Railway Lines
MBTA/NHDOT Funding Application

2011
Plaistow CMAQ Application to NHDOT partially funded

2013
Feasibility / Environmental Assessment Study
SINCE LAST MEETING

Site Option Development

Site Option Screening
• Input from PAC, Public, Town Selectmen

Site Selected for Further Evaluation
• 3 Alternatives
SITE OPTION SCREENING

Site Option Screening

- Site Options Eliminated
- Site Option Selected for Future Evaluation
ALTERNATIVE SITES

Alternative I
Station: Westville Road
Layover: Atkinson Depot Rd

Alternative II
Joanne Drive

Alternative III
Main Street
Alternative Analysis process

- Field and Site Visits
 - Environmental Resources
 - Noise & Vibration
 - Tour of Scituate Layover Facility
 - Operations Analysis
- Further Development of the Site Layouts
- Ridership
- Land use & Economic
ALTERNATIVE EVALUATION CRITERIA

<table>
<thead>
<tr>
<th>Completed</th>
<th>In Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Land Acquisitions and Displacements</td>
<td>• Traffic</td>
</tr>
<tr>
<td>• Socio-economic / Environmental Justice</td>
<td>• Air Quality</td>
</tr>
<tr>
<td>• Visual Resources / Aesthetics</td>
<td>• Noise and Vibration</td>
</tr>
<tr>
<td>• Operational Feasibility</td>
<td></td>
</tr>
<tr>
<td>• Hazardous Materials</td>
<td></td>
</tr>
<tr>
<td>• Natural and Cultural Resources</td>
<td></td>
</tr>
<tr>
<td>• Land Use / Neighborhood Character / Zoning</td>
<td></td>
</tr>
</tbody>
</table>
ALTERNATIVE I (STATION)
OPTION OF
ALT II LAYOVER & ALT III STATION
NOISE & VIBRATION ANALYSIS

- Federal Transportation Administration (FTA) Guidelines process used to evaluate noise & vibration

Steps Include:
- Identify noise-sensitive land uses
- Measure existing noise levels
- Calculate allowable increase in noise
- Calculate project related noise levels
- Determine if impacts will occur.
- Identify mitigation measures, as needed.
NOISE SENSITIVE LAND USES

- Identify noise-sensitive land uses and receptors (i.e., sites or buildings) by categories:
 - **Category 1:** Quiet is essential element in intended purpose (e.g., outdoor pavilion or concert hall)
 - **Category 2:** Where overnight sleep occurs (e.g., home, hospital, or hotel)
 - **Category 3:** Institutional land uses used primarily during day or evening (e.g., schools, libraries, theaters, churches)
Measure existing noise levels for selected locations along the project corridor.

- N-3: Holy Angels Kindergarten & Preschool
- N-4: Cul-de-sac at Bayberry Drive
- N-5: Westville Road park-and-ride lot
- N-6: Pollard Elementary School
NEXT STEPS – NOISE & VIBRATION

- Use base data from selected locations to calculate existing noise for all receptors
- Calculate allowable increase in noise using FTA noise modeling thresholds
- Calculate project related noise levels
- Determine locations that exceed allowable threshold
- Identify mitigation for sites that exceed the threshold
- Create a noise simulation model for final recommended alternative
MBTA GREENBUSH STATION & LAYOVER FACILITY (SCITUATE, MA)
MBTA GREENBUSH LAYOVER FACILITY - SITE LAYOUT
MBTA GREENBUSH LAYOVER FACILITY - NOISE WALL
MBTA GREENBUSH LAYOVER FACILITY - NOISE WALL FROM NEIGHBORHOOD
PURPOSE & NEED REVIEW

• PURPOSE
 ○ Provide an additional travel mode options that increase overall mobility in Plaistow and surrounding communities.

• NEED
 ○ Travel mode options for Plaistow and surrounding communities are needed to improve mobility and access to employment for residents and businesses in the Plaistow area while increasing opportunities for economic development.
Commuting Patterns Comparison

<table>
<thead>
<tr>
<th>City Pair</th>
<th>Littleton, Massachusetts</th>
<th>Ayer, Massachusetts</th>
<th>Shirley, Massachusetts</th>
<th>Plaistow, New Hampshire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate Distance from Boston - North Station</td>
<td>29 Miles</td>
<td>36 Miles</td>
<td>39 Miles</td>
<td>38 Miles</td>
</tr>
<tr>
<td>Weekday MBTA Commuter Rail Round Trips</td>
<td>17</td>
<td>13</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Average Trip Time on Commuter Rail (minutes)</td>
<td>60</td>
<td>68</td>
<td>73</td>
<td>80</td>
</tr>
<tr>
<td>Typical Inbound Weekday Boardings</td>
<td>313</td>
<td>435</td>
<td>315</td>
<td>n/a</td>
</tr>
<tr>
<td>Average Trip Time in Passenger Car (minutes)</td>
<td>42 (75+ in traffic)</td>
<td>51 (80+ in traffic)</td>
<td>55 (90+ in traffic)</td>
<td>43 (100+ in traffic)</td>
</tr>
<tr>
<td>Total Population</td>
<td>8,810</td>
<td>7,427</td>
<td>7,211</td>
<td>7,609</td>
</tr>
<tr>
<td>Total Workers</td>
<td>4,088</td>
<td>3,687</td>
<td>2,923</td>
<td>4,032</td>
</tr>
<tr>
<td>Work in MA</td>
<td>96%</td>
<td>100%</td>
<td>95%</td>
<td>48%</td>
</tr>
<tr>
<td>Work in Boston</td>
<td>7%</td>
<td>8%</td>
<td>11%</td>
<td>4%</td>
</tr>
<tr>
<td>Public Transit for Commute</td>
<td>3%</td>
<td>5%</td>
<td>6%</td>
<td>1%</td>
</tr>
</tbody>
</table>
ALTERNATIVE TRANSIT MODE BENEFITS

- Train travel can reduce commute time compared to highway on I-93
 - NH - Route 128 highway travel up to 40% longer during commuting hours
 - Rte 128 - Boston highway travel up to 100% longer during commuting hours
 - Monthly, highway commute expects length four times vs non-peak periods

Alternative Mode Attraction

From October 2014
Business NH Magazine

Gray Chynoweth, COO of hot tech company Dyn in Manchester, traveled to Boston last year to meet a group of about 60 young tech professionals looking for jobs. He told them about Dyn’s innovative work in Internet performance, its growth opportunities for employees and its award-winning culture. Then he asked, “So who is open to working in Manchester at Dyn?”

Only four hands went up. “I got this real negative vibe. I couldn’t believe it,” Chynoweth says. “Then I asked, ‘What if you could hop on the train in North Station and be in Manchester in about an hour?’ And suddenly there were 34 hands in the air.”
TOD DEVELOPMENT POTENTIAL
NEXT STEPS

- Complete Alternative Analysis
 - Traffic
 - Noise and Vibration
 - Air quality
 - Cost & Ridership
- Receive Public and PAC Comments
- Select Preferred Alternative
- Develop a Draft Environmental Assessment of Preferred Alternative

Next PAC Meeting: November 2014
Next Public Meeting: December 2014