	
	
	

	J-ONE
	[image: image1.png]

	Integrated Justice Information System
	
	Public services

The State of New Hampshire

Integrated Justice Information System

Justice – One Networked Environment

(J-ONE)

Proof-of-Concept
Summary

7.18.2002

Prepared By:

KPMG Consulting, Inc.

99 High Street
Boston, MA 02110

TABLE OF CONTENTS

1TABLE OF CONTENTS

1INTRODUCTION

2MESSAGING OVERVIEW

4J-ONE MESSAGING

6SPOKE CONFIGURATION

7HUB CONFIGURATION

8Servlets

8JDBC Connection Pools / Data Sources

8Queues

9JMS Data Source

9JAVA Components

10Stateless Session Beans

10Message Driven Beans (MDB)

12IJIS Message Flow

14TOOLS ANALYSIS

INTRODUCTION
This document describes the Justice – One Networked Environment (J-ONE) Proof of Concept and Working Design (PoC) and progress made to date with regards to the validation of the J-ONE messaging architecture. The goal of this effort was to

· Evaluate different technology/vendor options and make recommendations.

· Develop a minimal, working subset of the final functionality of the application.

· To prove that the selected architecture is viable and should be explored and expanded into the full production system.

The PoC has not been tested for fault tolerance, extensive error handling nor has it been stress tested.

The proposed J-ONE architecture is based upon asynchronous message exchanges between the systems that interact with the J-ONE application. The J-ONE application in this scenario represents the messaging infrastructure that will be further developed to facilitate message exchanges and query/response capabilities in future phases.

MESSAGING OVERVIEW

Messaging requires that all the participating systems are able to broadcast messages based upon the different events or triggers that might be required by the system. The messaging architecture usually involves a central message broker that interfaces with the external systems. All these systems broadcast their messages to this central system, who in turn, reviews the messages to ensure that the information is managed in a reliable, timely fashion, is presented to all other systems that might need the information, is stored in a permanent storage to ensure proper auditing and is processed as per the business/security rules associated with the message type, content and conditions. J-ONE can receive raw messages from contributing systems (spokes) or it might be receiving messages from another message broker based system (i.e. MAAP) that pre-processes the information before forwarding it to J-ONE. Such a design is referred to as a Hub and Spoke messaging architecture. In this architecture, a “spoke” can be another Hub.

[image: image2.wmf]HUB

SPOKE

SPOKE

SPOKE

SPOKE

SPOKE

SPOKE

HUB-SPOKE Messaging

As the name suggests, the ‘hub’ is the J-ONE engine that manages the flow of messages as they pass through the J-ONE system. ‘Spoke’, as the name suggests, is a perimeter system that resides between the hub and remote systems and acts as a bridge between the J-ONE hub and the participating remote systems. A spoke can be a message broker or a J-ONE spoke (see below).

Any messaging system is minimally made up of the following three components:

· Message Originator – Also known as the ‘Publisher’ of the message. The message originator can be a message generated by another system that is part of the middleware (See Messaging Middleware, below) or a remote system that needs to communicate information to another remote system. The originator is not always aware of the consumer. The originator is responsible for delivering the message to the J-ONE middleware. Once the message has been successfully processed by the middleware, the originator is free to terminate, delete or archive the message as per the established business process.

· Message Processor – Also known as the ‘Messaging Middleware/Infrastructure/Broker’. The processor accepts the incoming message, validates the content and distributes the message to the consumers/subscribers of the message. Validation and distribution are controlled by business and security rules.

· Message Consumers – Also known as a ‘Subscriber’ to the message. The consumer of the message processes the message content based upon the business requirements of the consuming system.

All systems participating in the message transaction need not be available at the same time. This is referred to as asynchronous messaging. To accommodate this key requirement, the messaging infrastructure needs to be reliable (durable) enough to ensure that the message is preserved throughout the life cycle of the message from origination to consumption. This message preservation is referred to as ‘guaranteed message delivery.’ A persistent storage mechanism is used for the message while it is participating in the messaging transaction. This storage is either a file system or a relational database. Relational databases are more reliable than a file system for message storage. Transactional support (begin transaction, commit and rollback) in a relational database is of utmost importance. This ensures that, as the message proceeds through each step in the life cycle of the message between origination and consumption, it is delivered as per the requirements of the system. In case of an error or exception during the message transaction the storage activity can be “rolled back.” If the message transaction completes as expected, the storage activity is “committed.” Additional spokes can very easily be added and removed from the system without disturbing existing functioning of the system

J-ONE MESSAGING

A messaging infrastructure is composed of:

· Messaging middleware.

· A database for storage.

· A programming language to develop the middleware components that implement business rules.

· Client software that creates and consumes messages.

Component evaluation

Oracle 8i was selected as the database for J-ONE. JAVA (J2EE) was agreed upon as the programming language. The most difficult decision proved to be the selection of the middleware platform, and justifiably so, since it is the heart of the application. Because of the desire to adhere to current industry standards, the middleware was expected to be J2EE compliant. This was heavily influenced by the decision to develop using JAVA. The stated direction for choosing the deployment platform was to make it as close to a single vendor solution as possible. Oracle is the current DOS standard and was tested and chosen for the database product. Oracle Application Server was the obvious choice for the middleware platform as well. The installation of Oracle Application Server 9i was not successful so the decision was made to evaluate other products. BEA WebLogic and IBM WebSphere were considered. Both WebSphere and WebLogic were considered suitable products, BEA’s WebLogic was considered slightly better and thus was chosen for the PoC. Client software (message originators and message consumers) such as Incident Management Systems, Case Management Systems, Criminal History, etc. are not part of the J-ONE system. The technology on which these systems are deployed is not a concern of J-ONE. As long as these systems are able to create and consume messages in a mutually agreed format, they can very easily participate in the J-ONE information exchange. For the PoC, a utility from ImageX/xmlLegal known as the XML Wizard was used to create a complaint. The complaint was then passed to the messaging infrastructure for distribution. The same utility was used to display the message when it was received by the destination spoke systems. This allowed for the PoC to demonstrate message creation by the originator, distribution by the processor, and consumption by the consumer.

The spokes, as mentioned earlier, will act as bridges between the originator, the J-ONE message processor and consumer applications. There are a number of options for selection of the spoke software. The goal was to find a product that was easy to use, provided the capabilities that were required for J-ONE (transactional and secure), was reliable and was economical. BEA’s WebLogic was prohibitively priced for wide implementation as spoke software. Products like SonicMQ, IBM MQSeries, etc were also considered. In each case there were either price issues or issues with the product’s ability to effectively communicate with the BEA application server hub. Spokes must support both an input and output queue. It was decided to look at a regular RDBMS databases as a possible solution. Oracle Lite was reviewed as a possible candidate. Oracle Lite is optimized for synchronization of data between an Oracle database and the Oracle Lite database residing on a wireless device. Oracle Lite does not have JDBC drivers available that allowed Oracle Lite to participate in normal database transaction operations. MS SQLServer was reviewed, but rejected as a possible candidate because it was overkill both in terms of product and price. MySQL, an open source database that is freely available on the Internet was reviewed and found to be suitable for the purposes of the PoC.

The hub/spoke architecture was created with the following configuration:

[image: image3.wmf]SPOKE

MySQL

SPOKE

MySQL

HUB

BEA WebLogic

Oracle 8i

Database

SPOKE

MySQL

SPOKE

MySQL

SPOKE

MySQL

SPOKE

MySQL

HUB-SPOKE Messaging

Infrastructure

AOC Case

Management

CHRI

LLE RMS/IMC

SPOKE CONFIGURATION

The spoke installation process, installs the MySQL database, the JAVA Development Kit (JDK 1.3.1), and business components that manage the exchange of messages between the spoke and the hub. The installation also configures the MySQL database by creating a standard user – cjishub – and the following 3 tables:

· MSGIN – This table represents the inbound queue of messages waiting to be consumed by the hub. There are three major fields in this table that are used by the PoC. These are the message id, message content and the message status fields. Message id is a unique id assigned to the message, message content is the actual message in XML format and the message status is an indicator used to indicate that the message has been consumed successfully by the destination system and is ready for archival. When a new message is placed in the database for delivery to the hub, it is created in this table with a message status of ‘N’, indicating ‘New’. After the message is successfully consumed (by the hub in this case), the status is changed to ‘R’ indicating ‘Read’. This is an indication to the system that this message is ready for archival.

· MSGOUT – This table represents the outbound queue of messages delivered by the hub for consumption by the remote systems. This table has the same structure as MSGIN table. When the hub inserts a message in the table, the status of the newly inserted record is set to ‘N’. Once the message has been processed, the status will be changed to ‘R’. Details of this mechanism are described below. This status is an indication to the system that this message is ready for archival.

· MSGARCHIVE – This table represents the archive of all the inbound and outbound messages after they have been consumed by their respective destinations. This table is similar to the MSGIN and MSGOUT tables, except that this table has an extra field to indicate the origin of the archived message – MSGIN or MSGOUT.

All tables have standard fields to capture the date time stamp of creation and consumption. There are 2 business components (Daemons) installed as part of this process. Both these components are threads that are started after the installation process is completed and these components monitor the MSGIN and the MSGOUT tables waiting for new messages. The daemon monitoring the MSGIN table sends a message to the hub notifying it of the new message(s). It continues to do so every 5 seconds (configurable) till the time the thread finds messages with the ‘N’ status flag. Once the hub consumes the messages, the hub updates the status to ‘R’. The daemon that monitors the MSGOUT table, notifies the remote systems of messages coming from the hub. For the PoC, this daemon will take the message from the hub and convert it into a file that resides in the c:\complaints\out folder and change the status of the MSGOUT table to “R’. The xmlLegal utility will be monitoring this folder and will display the messages as soon they are delivered to the c:\complaints\out folder.

HUB CONFIGURATION

The hub is the controlling entity of all activity within the J-ONE application. The hub consumes messages from the spoke. This is done when the spoke daemon notifies the hub that a new message is ready for processing. This is the first point of entry for the message into the J-ONE environment. The functionality demonstrated by the PoC is:

· A message is placed in the spoke MSGIN table.

· The spoke daemon notifies the hub that one or more messages are available for processing.

· The hub determines the spoke configuration information (IP Address) and creates a JDBC connection to the MySQL database.

· The hub extracts messages from the MSGIN table where the message status is ‘N’.

· The hub maintains integrity of the message delivery from the spoke using two-phase commit protocol. That is, the status of the message on the spoke is not changed until the message has been successfully consumed by the hub (copied to the hub message database).

· Once a message is successfully extracted from the spoke and saved in a message table on the hub, the hub updates the message status on the spoke to ‘R’.

· The hub disconnects from the spoke.

· The hub retrieves information about the subscribers.

· The hub opens a connection to each spoke that is to receive the message.

· The hub writes the message to each spoke MSGOUT table with a status of “N.”

· When the message has been written to the spoke, it is marked as delivered on the hub.

· Messages that are not delivered because the destination spoke is down or there are network problems will be stored in a holding queue. These messages will be delivered as soon as the destination spoke and the network are available.

Rationale for this approach:

Several connectivity options are available and common in message broker implementations. It is common for the remote systems to connect directly to the hub. In this implementation all queues are maintained and managed by the hub. Another option is to maintain the queues on the remote locations and have the hub monitor the queues. There are several issues with either of these two implementations:

· Increased workload on the hub when a new spoke is added, even if messages are not originated or consumed by the spoke.

· The hub is using processing cycles and network bandwidth monitoring the remote and/or local queues for new messages.

· Monitoring (polling) remote queues results in increased network traffic.

· If the queues are maintained locally, then the remote systems will need the intelligence to manage messages if the hub is unavailable.

In the approach utilized in the PoC, the hub is not wasting any processing cycles or network bandwidth maintaining/monitoring queues for the spoke systems. The spoke notifies the hub when there is a message, thereby moving the burden of monitoring the queues to the spoke machines and reducing the workload on the hub. The spoke machines consume less than 1% of an Intel Pentium II, 400 Mhz CPU.

Each incoming XML message identifies the topic (complaint, disposition, etc.). A workflow engine could be used for message processing and flow control for each topic. Some of the workflows are as simple as distributing the message to spokes. Some other workflows could be more involved. The initial approach was to use the BEA WebLogic Integration (WLI) product. The hope was to be able to leverage integration adapters provided by WLI to establish the initial message exchange between the spoke and the hub. After an initial evaluation it was determined that was not the best approach (see below the section that explains the products used and their pros and cons). Initial attempts were also made to work with BEA to understand the use of the product’s workflow capabilities. Near the end of the project, an issue was encountered that forced the PoC effort to deviate from the path of using WLI and wait for the issue resolution with the vendor. The product evaluation describes the pros and cons of using all the products in the PoC initiative.

The hub utilizes Oracle 8i database for maintaining information about the spokes, the topics and the subscribers to those topics. This functionality is limited to a single message type distributed to one or more spokes. The functionality will be further expanded and refined as the project moves into the detailed design. The same database will be used for message persistence to facilitate guaranteed message delivery. The following is the detailed configuration information for the BEA WebLogic Server.

Servlets

IJISPingServlet – This servlet is deployed on the WLS application server and is responsible for receiving the notification from the spoke informing the hub about new messages. The servlet formats the spoke information into an XML message and posts it into the SpokeRequestQueue for further processing.

JDBC Connection Pools / Data Sources

IJISMGMT – This connection pool is established to the Oracle 8i database that is used by the system to retrieve spoke information, topic and subscription information.

IJISMGMT_XA – This connection pool is an XA compliant data source that is used by the system wherever there is a need to exercise a two-phase commit transaction.

Queues

SpokeRequestQueue – JNDI Name: com.ijis.SpokeRequestQueue

This queue is where the IJISPingServlet posts the incoming request information from the spoke.

SpokeMessageQueue – JNDI Name: com.ijis.SpokeMessageQueue

This queue is where the messages are posted after they have been extracted from the spoke and have been introduced to the hub environment for further processing.

DistributionMessageQueue – JNDI Name: com.ijis.DistributionMessageQueue

This queue is where the messages are posted after the list of subscribers has been determined and the system is ready to start the distribution of messages to the remote subscribers.

DeadMessageQueue – JNDI Name: com.ijis.DeadMessageQueue

This queue is where messages are saved if a spoke is not accessible and the message cannot be delivered immediately. When the spoke is available the message is re-distributed for delivery. This will provide guaranteed message delivery. The name of the queue is a bit misleading and will be changed in the next phase to HoldMessageQueue.

JMS Data Source

The application server utilizes JMS data sources to persist all incoming messages. There are two types of persistent message categories:

· Durable – Messages that are persistent (stored) in memory. As long as the server is active the messages are stored in memory and qualify for guaranteed message delivery. The messages are lost if the server platform crashes or the server is shut down.

· Persistent – Messages that are persisted (stored) in physical storage like a file in a directory structure or a record in an RDBMS. These messages survive the situation where the server crashes or is shut down. When the server is re-started, these messages are still in the queue and are processed as if nothing happened. All messages in the J-ONE environment will belong to this category.

JAVA Components

There are two different categories of JAVA components that are installed as part of this application. The JAVA software development kit that is utilized to develop these components segregates them. There are two different categories being used –

· JAVA 2 Standard Edition (J2SE) – The components developed using J2SE are simple JAVA classes that are deployed within the application server Virtual Machine (VM). In this application, these classes are utility classes that are leveraged by the larger system to perform standard procedures and operations that are shared across the application. As the name suggests, these classes are packaged in the ‘Util.jar’ file and deployed on the application server by adding this jar file to the application classpath.

· JAVA 2 Enterprise Edition (J2EE) – These are components that were developed for deployment as enterprise business applications that leverage the application server container for services that are offered by the container. These components are further sub-divided based upon the scope of their usage. Some of these components might be leveraged across different applications, while others might be specific to the J-ONE application. These components are accordingly packaged into two separate jar files – Services. jar and IjisApp.jar. All of these components are referred to as Enterprise JAVA Beans.

· The IJISPingServlet, described earlier, is deployed as an archive file (.war) as a web application.

Enterprise JAVA Beans

There are three broad categories of Enterprise JAVA Beans –

· Stateful Session Beans

· Stateless Session Beans

· Entity Beans

Stateless Session Beans can be further specialized into beans that listen on a particular queue for new messages. These specialized beans are referred to as Message Driven Beans (MDB). These beans listen for new messages in a given queue and trigger the business processing of the message. Stateless Session Beans are the most optimal among all the categories of the EJBs. This is because these are used for executing a procedure and are returned to the application server bean pool. They do not maintain any state information between multiple instantiations/invocation of the bean thereby reducing the overhead involved in creating Stateful beans. This is the direction that has been pursued for the PoC. The Beans that were developed for the PoC are described below:

Stateless Session Beans

RemoteMessageExtractorBean: This bean is responsible for extracting a message from the spoke after the spoke has notified the hub that a new message exists.

MessageProcessorBean: This bean is responsible for extracting the topic information from the message, determining the subscribers for the message and posting of the message to the DistributionMessageQueue along with the subscribers’ information.

MessageDistributorBean: This bean is responsible for distributing the message to the subscribing spoke(s). If the subscribers are not available the message is posted to the DeadMessageQueue for distribution at a later time, ensuring guaranteed message delivery.

Message Driven Beans (MDB)

SpokeRequestMDB: This MDB is responsible for monitoring the SpokeRequestQueue for messages that are posted by the IJISPingServlet. These messages notify the hub that there is a new message to be extracted from the specified spoke. This MDB then invokes the RemoteMessageExtractorBean to extract the message from the specified spoke and posts it to the SpokeMessageQueue for further processing.

SpokeMessageMDB: This MDB is responsible for monitoring the SpokeMessageQueue for messages that are posted by the RemoteMessageExtractorBean bean. This MDB then invokes the MessageProcessorBean to retrieve the subscriber information and wraps the message with the subscriber information before posting it to the DistributionMessageQueue for distribution to the subscribing spokes.

DistributeMessageMDB: This MDB is responsible for monitoring the DistributionMessageQueue for any messages that are posted by the MessageProcessorBean bean. This MDB then invokes the MessageDistributorBean to start the distribution process. If a subscriber is not available, the message is posted to the DeadMessageQueue for distribution when the subscriber is available.
IJIS Message Flow

This section describes the flow of a message from the spoke that created it to its final destination(s).

[image: image4.wmf]SPOKE

MySQL Database

MSGIN

MSGOUT

MSGARCHIVE

Daemon I

Daemon II

Notifies hub

over the net

Writes to a

file on local

drive

· The spoke maintains the inbound and the outbound queues for the messages to be exchanged.

· If there is a new message inserted into the MSGIN table, Daemon1, which is monitoring this table, sends a notification to the Hub informing it about the arrival of new message(s). The daemon accomplishes this by sending a message to the IJISPingServlet.

· The Servlet extracts the spoke information from the SPOKE_MAPPER table and creates a new XML message that includes the spoke id and other connection information (IP address, etc.).

· This message is placed in the SpokeRequestQueue as is depicted in the diagram below.

[image: image5.wmf]Operational Diagram on HUB

SpokeRequestQueue

DaedMessageQueue

DistributionMessageQueue

SpokeMessageQueue

MessageExtractor

Bean

MessageDistributor

Bean

MessageProcessor

Bean

SpokeRequestMDB

DistributeMessageMDB

SpokeMessageMDB

Successful Message

Delivery to Spokes

Messages failed in distribution

will be sent to

DeadMessageQueue.

· Once the message is in the SpokeRequestQueue, it triggers the SpokeRequestMDB, which is listening on this queue for new messages.

· This MDB invokes the MessageExtractorBean that is responsible for extracting all of the messages from the spoke MSGIN table and drop them into the SpokeMessageQueue.

· SpokeMessageMDB, which is listening on the SpokeMessageQueue, invokes the MessageProcessorBean.

· The MessageProcessorBean extracts the topic information from this message.

· The MessageProcessorBean executes a query against the subscription database to look for the active subscribers for this topic.

· The subscription provides information on one or more spokes interested in this message type, it wraps the message with the subscribers’ information and places the message into the DistributionMessageQueue.

· DistributionMessageMDB, which is listening on the DistributionMessageQueue, invokes the MessageDistributionBean and requests distribution of the message to the requesting spoke(s).

· The DistributionMessageMDB establishes a connection with the remote spoke and places the message in the MSGOUT table as depicted in the SPOKE diagram. The second daemon running on the receiving spoke extracts the message and creates a file from the message and places the message in a predefined directory for consumption by the remote system. A local application could choose to monitor the MSGOUT table in lieu of using the second daemon.

· In the PoC, the same application is being utilized to create the message and also display the message on the receiving systems. This utility is the xmlWizard by ImageX.

TOOLS ANALYSIS

The following products are being used in the PoC:

Database: Oracle 8i is the database that is being used by the hub to manage information about the spokes, the topics and the subscribers to those topics. The hub also uses the database to persist all messages. Oracle database was the database of choice because of its market reputation (about 60% market share) and its ability to be deployed on the Unix environment. In the next phase the database will need to be upgraded to an Oracle 9i database.

The application also uses MySQL for maintaining the queues on the spoke side. The product is an open source database (like Linux) available as a free download from the Internet. The product has proven robust enough to be considered for the current needs of the application and has a positive impact on the project bottom line. The only concern about MySQL is the lack of XA support in the JDBC drivers. This will be further investigated in the detailed design phase.

Application Server: Oracle 9i Application Server platform was considered as the first choice. However after repeated efforts to install the product failed, the efforts were redirected towards investigating competing products like BEA’s WebLogic Server (WLS) and IBM’s WebSphere Server. WLS emerged as the choice for the J-ONE project, albeit with a very small margin as compared to WebSphere. The application server is the runtime environment for the entire application and is key for the success of the application.

Workflow Engine: WebLogic Integration (WLI) Server was considered and tested during the early stages of PoC development. The following bullets explain the steps taken to evaluate the product and the outcome of the process:

· WLI provides the ability to create workflows that can be triggered by the arrival of a message in a queue. These workflows can be easily created/modified by using a GUI tool that is provided as part of the WLI environment. This allows for the workflows to be fairly easy to manage.

· WLI provides integrated third party adapters that allow the engine to interface to some standard RDBMS products to extract information. These adapters are tightly coupled with the WLI environment and utilize the connection pools and data sources that are created as part of the WLS/WLI environment.

· WLI is a very flexible and configurable tool that allows for complex workflows to be created easily and deployed in real-time.

· WLI is a pure J2EE compliant based workflow engine.

However, the following issues/concerns need to be resolved/understood before making a decision to purchase the WLI product:

· FileNet’s Brightspire is the current State workflow standard. This product is built upon the CrossWorlds product purchased by IBM.

· The adapters for WLI are third-party products and are therefore add-on costs to acquire the product.

· The adapters are very closely coupled with the data sources defined in the WLS environment. While this allows for the adapters to be optimized for use with the platform, it also creates a limitation where the database connection on the adapters cannot be changed dynamically in the run-time environment. J-ONE will have spokes where the volume of message transactions could vary from a few hundred a day for some spokes, to a couple-a-week in some other situations. However, WLS would be required to maintain dedicated data sources to all the spokes thereby wasting system resources, which can be better leveraged by the rest of the application. This could be easily avoided if the adapters allowed for a dynamic interchange of data sources, which is not available right now. Therefore, the adapters in their current state are not the most optimal solution for the current requirements.

· Workflow management is fairly easy. However, there is a lot of configuration work that needs to be done upfront to make the management part easy. This is not necessarily a weakness of the product. This is more so because of the flexibility of the product, none-the-less and issue to consider. Debugging is also not as intuitive as could be in the situation where the beans are developed directly using an IDE. This may increase the development and maintenance time.

· The application had a need for implementing database and transaction management for a particular bean and deployed it with Bean-Managed-Persistence (BMP). WLI expects all the beans deployed as Container-Managed-Persistence (CMP) and does not support the BMP beans. This issue could be resolved by avoiding the use of CMP beans as part of the workflow. However, it is still a limitation of the product.

· WLI is the optimal solution for business environments that are very process heavy with complicated workflows that also include human intervention when needed. Given the current requirements of J-ONE messaging infrastructure requirements, there is very small number of workflows. These workflows are also fairly simple to implement and manage, and chances are these workflows are also not going to be changed very frequently.

Given the cost of the product, and the very small percentage of the product that will be leveraged by the J-ONE application, a cost-benefit decision needs to be made about the effectiveness of using WLI. The recommendation would be to hold off on acquiring the product for now. The issues outlined above should be resolved and the product should definitely be considered for future workflow needs for the current application or any other application needs.

Integrated Development Environment (IDE): Oracle JDeveloper was used for this application as the JAVA IDE. The product is very tightly coupled with Oracle Application Server, though it does provide some rudimentary support for WLS. The product is a fairly stable product and served the purpose well for the PoC. Another product under consideration is the TogetherSoft Control Center. Their product suite is a fairly robust IDE and is very tightly integrated with some of the leading application server platforms. The IDE allows the technical team to model the business components. These models are internally translated into code in the language of choice (support is available for J2EE, Visual Basic and C++). From here on, any changes made to the model or the code are automatically updated in both the places. The documentation capabilities of the IDE are very robust and allow for easy maintenance of the code base and the supporting documentation within the same environment. The product can very easily integrate with some of the leading Configuration Management tools. The product will be evaluated in detail during the detailed design phase to make purchase recommendations.

XML Editor: The ImageX xmlWizard was used to create and edit complaints. The tool provides a graphical interface for entering data consistent with an XML Schema. The result of the editing session is a valid XML instance.

This project was supported by Grant No. 2000-DB-MU-0033 and Grant No. 2001-DB-BX-0033 awarded by the Bureau of Justice Assistance, Office of Justice Programs, U.S. Department of Justice. Points of view in this document are those of the author and do not necessarily represent the official position or policies of the U.S. Department of Justice.

_1086765778.vsd

_1086765779.vsd

_1086765780.vsd

_1086765776.vsd

