
[image: image9.png]
	State of New Hampshire

Department of Safety

BEA Thin Client JMS Solution Evaluation

February 22, 2003

	Version
	Description

	Version 1.0 – 2/22/2003
	Draft

	
	

	
	

Table of Contents

21.
Intended Audience

22.
Introduction

23.
Messaging Overview

44.
J-ONE Messaging Proof of Concept Requirements

55.
Proof of Concept

56.
Solution Recommendations

67.
BEA Thin Client JMS Solution

6BEA Thin Client Implementation

7SOAP Overview

8SOAP Message Content

8SOAP Message XML Structure

8SOAP Request

9SPOKE Response

9SOAP Over JMS

10JMS as a SOAP transport protocol

10Combination of JMS and SOAP/HTTP

11Details of SOAP Demo

1. Intended Audience

This document is intended for the New Hampshire J-ONE Technology Team. This document details the results of the BEA Thin Client JMS Solution evaluation performed as part of the J-ONE Phase IA development project.

2. Introduction

The J-ONE messaging architecture currently uses BEA’s WebLogic server as the messaging Hub and MySQL database as the Spoke. The Hub uses JAVA Messaging Service (JMS) as the protocol to move messages through the J-ONE queues. Message exchange between the hub and spokes takes place by the hub creating a JAVA Database Connectivity (JDBC) connection to a MySQL database on the respective spoke, completing the message exchange and then closing the connection. Please refer to the J-ONE Electronic Complaint and Disposition Detailed Design document for a detailed explanation of this approach. The recommended industry standard for an application like J-ONE is to use JMS as the message exchange protocol between all entities. However, this requires that each spoke have a JMS client that is capable of exchanging messages with the hub.

During the development of the original proof of concept for J-ONE, it was determined that a JMS Client using BEA software would cost the project approximately $1100 per spoke. With the possibility of 250 spokes, this approach was considered to be too expensive for widespread implementation. An alternative mechanism was investigated and it was decided to use a JDBC based approach for J-ONE communications. This alternative was successful in achieving the desired results, but it is still limited to using the JDBC protocol only for communication. During further discussions with BEA, BEA allowed J-ONE to use the relevant components of BEA application server to develop a JMS spoke client. This document describes the evaluation of the BEA JMS thin client and a recommendation of how it should be deployed in the future. The document is organized into the following sections:

· Messaging Overview

· J-ONE Messaging Requirements

· Solution Options

· Solution Recommendation

· Supporting Technology Explanation and Approach

3. Messaging Overview

There are two types of message delivery mechanisms:

· Synchronous Messages: These are messages where the sender sends a message to the recipient(s) and waits for a response. The sender cannot proceed unless it receives a response. A typical example of a synchronous message would be an ATM machine, where the user enters their pin, which is authenticated by the bank. The ATM machine would not allow the user to proceed unless the user has been authenticated.

· Asynchronous Messages: These are messages where the sender sends the message and continues with its operation without waiting for a response from the recipient. Depending on the business application, the sender might receive a delivery confirmation or a response at a later date. The operations of the sender do not stop while waiting for a response. J-ONE uses asynchronous messaging.

Messaging applications typically have:

· Message-oriented middleware (MOM), which accepts the incoming message, can validate the content and distributes the message to the consumers/subscribers of the message. Validation and distribution are controlled by business and security rules. The MOM vendor provides some or all quality of service components such as Guaranteed Messaging, Transactions, Acknowledgements and persistence (store and forward). Discussion on details of the quality of service is beyond the scope of this documentation.

· Message sender (message publisher) is an application that uses messaging APIs to send messages.

· Message recipient (message subscriber) is an application that uses messaging APIs to consume messages.

Both the message sender and message recipient are known as message clients.

[image: image1.wmf]Application 1

Messaging API

Messaging Clients

Message-Oriented

Middleware

Application 2

Messaging API

Messaging Clients

Message-Oriented Middleware

MOM products are available from various vendors. Historically messaging software vendors had their own proprietary messaging technology and messaging applications were not portable across vendors. Java Message Service (JMS), a part of the J2EE specification was designed to address this incompatibility. JMS specifies a standard set of APIs for all vendors to implement their messaging applications. As JMS grew in popularity a number of MOM vendors adopted the standard and began developing Java based messaging applications with a common programming model that is portable across messaging systems.

MOM architectures vary in their implementation. One of the most common is the centralized architecture. The main component of a centralized architecture is a message server, also known as message router or broker. The message server is responsible for delivering messages from one messaging client to another. The major advantage of the architecture is a minimum amount of network connections, while still allowing any part of the system to communicate with any other. The current implementation of J-ONE uses this architecture.

[image: image2.wmf]Centralized Hub & Spoke Architecture

Message

Server

JMS Client

JMS Client

JMS Client

JMS Client

Application 1

Application 4

Application 3

Application 2

Topics

Topics are message types to which consumers can subscribe. When a subscriber subscribes to a topic they receive all messages of the type defined by the topic. A complaint message type is an example of a topic. AOC will receive (have access to) all complaints. Each topic consumes system resources of the Message Server.

Queues

Not all message types are topics. Some message types require further qualification. This is accomplished by defining business rules based upon the message type and content of the message. For example, a guilty disposition is a message type that will be distributed to one or more of HOC, DOC and Probation and Parole. Dispositions will also be distributed to the initiating law enforcement department. This type of message processing is known as point-to-point (P2P) distribution. Distributing P2P messages requires the use of a message queue. Message queues consume system resources of the Message Server.

4. J-ONE Messaging Proof of Concept Requirements

The J-ONE messaging solution has three key requirements:

a. Send all messages from the spoke to the hub using JMS.

b. Publish and Subscribe distributions where the message publishers (Spokes) publish a message to a topic (i.e. Complaint) and the message is distributed to all subscribers of the topic (Spokes) using JMS.

c. Point-to-point distribution where messages meeting criteria (rules) are directed to a specific subscriber (Spoke). These messages are placed in a specific queue dedicated to the subscriber (Spoke) and are delivered using JMS.

5. Proof of Concept

A proof of concept (PoC) was developed to evaluate the BEA Thin Client JMS solution. This (PoC) helped us conclude that using the BEA JMS Thin Client solution allows J-ONE to successfully exchange messages between the Hub and the Spokes using JMS. This approach is explained in detail in Section 7. The evaluation process confirmed the following:

1. Messages were successfully sent from the spoke to the hub using JMS.

2. Messages intended for all subscribers were published to the appropriate topic on the Hub, and were distributed to all subscribers using JMS. When the hub received a complaint from a PD (emulated by a spoke), the message was published to the ‘Complaint’ topic and was successfully delivered to both AOC and Criminal History (emulated by two other spokes) using the JMS solution.

The evaluation process did not confirm the following as part of the PoC:

· Volume testing

· Stress testing

· Exception or error handling.

These will be tested once the production quality design and development work for the BEA Thin Client is completed as part of the next phase.

SOAP

The Simple Object Access Protocol is becoming a common delivery protocol for Internet messaging. SOAP is typically implemented using either HTTP or HTTPS but is easily adapted to JMS. The PoC included testing a SOAP implementation using JMS. SOAP requires a SOAP Processor that runs on a web server. This is described in detail under “7. BEA Thin Client JMS Solution, SOAP Overview.” Because SOAP requires a web server it is not recommended for the current implementation.
6. Solution Recommendations

J-ONE stakeholder environments vary in size and volume of transactions. There are entities that constitute the bulk of messages going through J-ONE (i.e. AOC, DOS, DOC, State Police, Manchester PD, Nashua PD, etc.). There are others where the volume of messages varies from a few per day to one or two per week. Creating individual queues for the smaller entities creates avoidable overhead on the Message Server (J-ONE hub). It is recommended that all spokes with sufficient transaction volume have a dedicated queue on the hub.

The current implementation uses a single, generic/shared queue for multiple spokes. The messages are delivered to the spokes via JDBC. It is recommended that interfaces to low volume installations continue to use the current J-ONE implementation where the hub establishes a JDBC connection to push messages to and retrieve messages from their spokes.

This recommendation requires supporting two types of spoke implementations: JDBC, which already exists, for small message volume spokes and the JMS solution for larger volume implementations. This will be a short-term nuisance that we believe is tolerable. As J-ONE grows and budget increases we will be able to add additional CPUs and BEA licenses and support a greater number of JMS spokes.

7. BEA Thin Client JMS Solution

BEA Thin Client Implementation

BEA JMS implementation classes are archived in the weblogic.jar, which is part of a BEA Weblogic installation. The standard WebLogic implementation is approximately 35 MB. BEA provides a mechanism for extracting the classes required by a JMS client. This set of classes has a much smaller footprint (about 6MB) than the full implementation. The recommended JMS client uses these classes to communicate with the hub.

Steps involved in the development of the BEA JMS Thin Client:

1. The BEA utility is called the – verboseToZip utility. The utility is used to parse the output of Java applications like QueueSender and QueueReceiver to identify all classes referenced during execution. The classes are packaged into the BEA thin client jar file.

2. The QueueSender and QueueReceiver are JMS clients that send and receive messages using a SpokeMessageQueue within the BEA Weblogic Server. These classes have the ability to process TextMessage as well as ObjectMessage.

3. The newly created jar file was included in the classpath of the spoke.

4. We made sure that the weblogic.jar was not in the classpath.

5. The JMS spoke clients were started to send and receive messages using the SpokeMessageQueue. This was the same processing used in the original spoke solution.

6. The sent messages were delivered to the receiving client, which proved that all classes required by the JMS client were successfully packaged in the BEA thin client jar file.

[image: image3.wmf]IJIS I-A Operational Diagram

(Using JMS Thin Client on Spokes)

HUB

SpokeMessageQueue

DistributionTopic

JMS

Engine

SpokeMessage

MDB

Index

Distribution is by JMS

engine

Spoke

JMS Thin Client Engine

Spoke

Spoke

Spoke

Spoke

Message Producer

Message Consumers

Messages are

transmitted

using JMS

The diagram above shows a probable JMS implementation within the J-ONE enterprise. There is a caveat to this solution. BEA does not yet provide the thin client “out-of-the-box.” They provide the capability to generate the thin client as needed and as described above. BEA does not deliver this client configuration. In the future, as new versions of the BEA Application Server are released, it will be the responsibility of the project team to ensure compatibility between versions or to manage the upgrade of clients to a new version.

The above-mentioned mechanism will allow the Queue Sender class to send a message to the hub. The hub will then determine the distribution mechanism based upon the distribution list and the sensitivity of the document. If the message is for general distribution, the message will be posted to a topic and the underlying JMS infrastructure will ensure that the message is distributed to all subscribers. However, if a message is meant for a specific user, even if more than one subscriber qualifies for the message topic, the hub will have to provide a different mechanism to distribute the message to that specific subscriber.

SOAP Overview

The Simple Object Access Protocol (SOAP) is a protocol to invoke services in a distributed environment to exchange XML messages. SOAP was originally developed for distributed applications to communicate over HTTP and through corporate firewalls. SOAP defines the use of XML and HTTP to access services, objects and servers in a platform and programming language agnostic environment. In addition to HTTP, SOAP requests can be sent using JMS and FTP. In its simplest form, SOAP can be described as a way to execute remote procedure calls (RPC) using XML as the message format as shown in the following diagram.

[image: image4.wmf]SOAP Client

SOAP Response

SOAP Request

Business Component as a

SOAP Service

SOAP - IN ITS SIMPLE FORM

The SOAP client sends a SOAP request to a service that supports the SOAP messaging standard. The service processes the request and returns a reply as a SOAP response. SOAP allows the client to invoke a service object method, passing required parameters.

SOAP Message Content

SOAP message content can be broken into three parts:

· The structure of the SOAP envelope (Payload) defines a general structure expressing the content, processing party and optional/ mandatory nature of a message.

· The SOAP encoding rules define a serialization mechanism that can be used to exchange instances of application-defined datatypes.

· SOAP's Remote Procedure Call defines a convention that can be used to initiate remote services and their responses.

SOAP Message XML Structure

Every SOAP message contains particular tags and attributes. It consists of:
· The SOAP envelope: This is the first element in the XML document representing the message and is mandatory.

· The (optional) SOAP header: The header is an optional part a message encapsulated within the SOAP envelope. The header provides destination and routing (intermediate destinations) information to the transport mechanism. SOAP defines attributes that indicate which destinations can process the message and whether processing is optional or mandatory.

· The (required) SOAP body: This is the container for the information being sent to the message receiver (the SOAP service). The body contains message content as well as the SOAP service method name and arguments.

A SOAP response looks just like a SOAP request. A SOAP request and response from a SOAP Weather service might look as illustrated below. Method ‘getWeather’ is invoked on a SOAP service identified by the universal resource name ‘urn:weatherservice’, passing zipcode as 03109 in the SPOKE request. The SOAP Weather service returns temperature as 85 in the SPOKE response.
SOAP Request

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getWeather

 xmlns:ns1="urn:weatherservice"

 SOAP-ENV:encodingStyle=" http://www.w3.org/2001/09/soap-encoding>

 <zipcode xsi:type="xsd:string">03109</zipcode>

 </ns1:getWeather>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>
SPOKE Response

 <?xml version='1.0' encoding='UTF-8'?>

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getWeatherResponse

 xmlns:ns1="urn:weatherservice"

 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding">

 <return xsi:type="xsd:int">85</return>

 </ns1:getWeatherResponse>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

[image: image5.wmf]SOAP Client

Business Component as a

SOAP Service

XML Parser

SOAP Engine

WebServer/ServletEngine

SOAP Response

SOAP Request

SOAP - OPERATIONAL DIAGRAM

The diagram above depicts use of the SOAP engine in a real-life situation. The SOAP engine resides within a Web Server and requires an XML parser. It interprets incoming SOAP requests, invokes a requested method on the requested object and returns a result in the form of a SOAP response.

SOAP Over JMS

As mentioned previously, a SOAP client typically communicates with a SOAP service over HTTP invoking a service. Since HTTP is a stateless protocol, SOAP over HTTP lacks transactional support and hence, reliability of message delivery. Using SOAP via JMS provides transaction support. JMS and SOAP could be used in one of two ways:

· JMS as a SOAP transport protocol, instead of HTTP.

· Combination of JMS and SOAP/HTTP.

Both scenarios are described in the following sections.

JMS as a SOAP transport protocol

[image: image6.wmf]INDEX

JMS Based

Messaging

Bus /MOM

SOAP

Client

SOAP/JMS binding

JMS Client Library

SOAP

Client

SOAP

Client

JMS as a SOAP Transport Protocol

The SOAP specification defines packaging for SOAP messages into an HTTP data stream. SOAP messages can also be packaged in a JMS message and sent to a SOAP service. A SOAP client sends a SOAP message using JMS to a message destination (either a queue or a topic). Another SOAP client listens at the destination to receive the SOAP message, also using JMS. In this scenario, reliability of message delivery could be achieved using JMS transaction mode while sending and receiving the messages.

The SOAP specification typically describes an HTTP based request/reply mechanism for RPC. A vendor is free to offer other transports and still produce a SOAP-compliant mechanism. Unfortunately, the SOAP specification does not mention how to implement transports except HTTP, which allows vendors to develop their own proprietary non-HTTP transport implementations. JMS also provides specifications, but leaves the implementation up to the MOM vendor. Therefore, both of these services should use the same runtime environment for JMS and SOAP implementations (SOAP/JMS binding) on the SOAP client and the JMS server.

Combination of JMS and SOAP/HTTP

[image: image7.wmf]INDEX

JMS Based Messaging Bus / MOM

Combination of JMS and SOAP/HTTP

JMS Client (Receiver)

JMS Client

(Sender)

SOAP Engine

SOAP Response

over HTTP

SOAP Request

over HTTP

SOAP call within a

JMS Transaction

SOAP

Adapter

JMS Client

Library

JMS Client

The SOAP/HTTP request is split into a JMS send & receive and SOAP/HTTP. A JMS client (sender), JMS client (receiver), a SOAP adapter and a SOAP engine are the major pieces in this scenario. The SOAP adapter provides the SOAP specific API management and/or handles the SOAP specific issues related to the SOAP engine. The sender sends a SOAP message using JMS to a destination (either a queue or a topic) while the receiver listens on the destination in a JMS transactional mode. Upon arrival of the message, the receiver uses the SOAP adapter to process the message through the SOAP engine. If the SOAP service and hence, the SOAP adapter returns without any SOAP fault, the message is committed by the receiver, otherwise, it is rolled back. If the sender expects a reply back and has specified the ‘replyTo’ property of JMS message, the receiver pushes the reply message accordingly. This solution provides message reliability through JMS transaction while maintaining the SOAP engine vendor-neutral. This approach is handled in the SOAP demo, described in the following sections.

Details of SOAP Demo

As mentioned in the previous section, a feasibility study of running a SOAP or WEB-SERVICE engine (used synonymously, henceforth) on a spoke was undertaken. A working demo was created to better understand how the SOAP engine could be used in distributed environment and especially within the current J-ONE implementation.

[image: image8.wmf]IJIS I-A Operational Diagram

(Using Apache SOAP Engine)

HUB

SpokeMessageQueue

DistributionTopic

JMS

Engine

SpokeMessage

MDB

Index

Distribution is by JMS

engine

Spoke

Apache Soap Engine

JMS Thin Client Engine

Spoke

Spoke

Spoke

Spoke

Message Producer

Message Consumers

Messages are

transmitted

using JMS

J-ONE Spoke Setup

To demonstrate a distributed working environment, Apache SOAP was installed on more than one spoke along with Apache Tomcat web server. Apache SOAP is an open-source implementation of the SOAP v1.1 and developed by the Apache Foundation, an open-source community that undertakes collaborative, consensus based development projects and licenses its product at no cost. The Apache SOAP engine, SOAP 2.2, is based on IBM’s SOAP4J. The Apache Tomcat web server is required to host a soap servlet – rpcrouter. Just like the Apache SOAP engine, the Apache Tomcat is a no cost moderately scalable web server offering. The SOAP engine was deployed and configured within the Tomcat server environment. A SOAP server class – MyServer, was implemented as a SOAP service along with a method – process, which accepts a String argument and returns back a String. To test the correctness of the SOAP engine configuration, a simple client class to the SOAP service – MyClient, was written and tested.

Upon completion of SPOKE engine configuration on two machines, one of the spoke machines was designated as a Message Producer on which JMS Client (Sender) was running using the BEA Thin Client solution described earlier.

BEA Weblogic Server Setup

Queues:

· SpokeMessageQueue: Queue used by the message producer on one of the spokes to send JMS messages.

· DistributionQueue: Queue used by the SpokeMessageMDB to place messages for distribution. (In the current J-ONE architecture, some more queues are present along with the above-mentioned two. However, those queues were not created in the demo, since the demo was using queues as a pass-through mechanism and no value add was intended in the demo when the message flows through queues.) From an implementation standpoint, none of the other queues used in the current J-ONE environment will be affected.

EJBs:

· SpokeMessageMDB: A message driven bean listening on SpokeMessageQueue. This bean routes the messages into DistributionQueue.

· DistributionMDB: A message driven bean listening on DistributionQueue. This bean is responsible for the final distribution of messages placed in the DistributionQueue. The logic to find the subscription list and how to connect to individual subscribers was stubbed into separate methods.

Test

· A message was sent from the JMS message producer (Spoke Client) to the SpokeMessageQueue on the BEA Weblogic Server.

· The SpokeMessageMDB moved this message into the DistributionQueue.

· The DistributionMDB created the SOAP envelope and sent the message to the SOAP Service running on the respective spokes.

· The SOAP service displayed the message in the spoke console.

· The SOAP service returned a string value to the DistributionMDB indicating success.

· DistributionMDB displayed the success message on the WebLogic Server console.

Conclusion

The test demonstrated:

· The creation and implementation of the BEA Thin Client JMS solution.

· Use of the Apache SOAP engine in distribution.

��

[image: image9.png]
[image: image10.jpg]

[image: image11.png][image: image12.jpg]_1106630320.vsd

_1106637509.vsd

_1107667557.vsd

_1104929372.vsd

_1106109586.vsd

_1106110661.vsd

_1104934601.vsd

_1104580842.vsd

