����Criminal Justice Information System����J-ONE��� FORMTEXT ��Public services���

The State of New Hampshire

Integrated Justice Information System

J-ONE Electronic Complaint and Disposition

Detailed Design

08/29/2002

Prepared By:

KPMG Consulting, Inc.

99 High Street�Boston, MA 02110

Version�Description��V1 08/26/2002�First final version��V2 08/29/2002�Incorporate revisions to V1 from Gary, Reg and Carol�����

	

�Table of Contents

� TOC \o "1-3" \h \z �Table of Contents	� PAGEREF _Toc18129216 \h ��1�

INTRODUCTION	� PAGEREF _Toc18129217 \h ��2�

MESSAGING OVERVIEW	� PAGEREF _Toc18129218 \h ��3�

J-ONE MESSAGING	� PAGEREF _Toc18129219 \h ��5�

SPOKE CONFIGURATION	� PAGEREF _Toc18129220 \h ��7�

SEND Configuration	� PAGEREF _Toc18129221 \h ��8�

J-ONE HUB	� PAGEREF _Toc18129222 \h ��14�

JDBC Connection Pools / Data Sources	� PAGEREF _Toc18129223 \h ��16�

JMS Data Source	� PAGEREF _Toc18129224 \h ��16�

JAVA Components	� PAGEREF _Toc18129225 \h ��16�

Enterprise JAVA Beans	� PAGEREF _Toc18129226 \h ��17�

Standard J-ONE Exchange format	� PAGEREF _Toc18129227 \h ��17�

Hub Message Flow	� PAGEREF _Toc18129228 \h ��17�

Spoke Message Extraction	� PAGEREF _Toc18129229 \h ��18�

Checksum Validation	� PAGEREF _Toc18129230 \h ��20�

J-ONE Transformation	� PAGEREF _Toc18129231 \h ��22�

Determine Subscribers	� PAGEREF _Toc18129232 \h ��23�

Spoke Transformation	� PAGEREF _Toc18129233 \h ��25�

Distribution to Spokes	� PAGEREF _Toc18129234 \h ��26�

TOOLS ANALYSIS	� PAGEREF _Toc18129235 \h ��28�

Appendices	� PAGEREF _Toc18129236 \h ��29�

Appendix 1 – XML Message Exchange Format	� PAGEREF _Toc18129237 \h ��30�

Appendix 2 – Spoke Table Dictionary	� PAGEREF _Toc18129238 \h ��31�

Appendix 3 – Spoke Daemon Configuration	� PAGEREF _Toc18129239 \h ��34�

Appendix 4 – Hub Table Dictionary	� PAGEREF _Toc18129240 \h ��35�

Appendix 5 – J-ONE Functional Test Plans	� PAGEREF _Toc18129241 \h ��37�

Daemon I	� PAGEREF _Toc18129242 \h ��37�

Daemon II	� PAGEREF _Toc18129243 \h ��38�

Daemon III	� PAGEREF _Toc18129244 \h ��42�

Daemon IV	� PAGEREF _Toc18129245 \h ��43�

Daemon V	� PAGEREF _Toc18129246 \h ��44�

Spoke Message Extraction	� PAGEREF _Toc18129247 \h ��45�

Checksum Validation	� PAGEREF _Toc18129248 \h ��46�

J-ONE Transformation	� PAGEREF _Toc18129249 \h ��47�

Determine Subscribers	� PAGEREF _Toc18129250 \h ��47�

Spoke Transformation	� PAGEREF _Toc18129251 \h ��48�

Distribution to Spokes	� PAGEREF _Toc18129252 \h ��49�

�

�INTRODUCTION

This document describes the J-ONE detailed design for exchanging electronic complaints and dispositions. Electronic complaints will be exchanged during the pilot to be executed in December 2002. The return of dispositions from the AOC case management system to the originating law enforcement entity is a “stretch goal” of this phase. This detailed design document presents the messaging infrastructure that will be developed to facilitate message exchanges. The proposed architecture is based upon asynchronous message exchanges between the systems that interact with the J-ONE application. The goal of this effort is to:

Expand on the concepts and technologies tested during the Proof of Concept (PoC) phase to design a messaging infrastructure that will satisfy the requirements of the J-ONE system. Highlights of this design are:

Guaranteed message delivery

Assuring message integrity

Auditing of message exchange and transformations

Efficient message routing by the hub

Routing is based upon the metadata provided by the originating application. The hub and the spoke will not access the content of the message unless a clearly defined business need is identified.

This design is directed toward the exchange of electronic complaints and dispositions between a local law enforcement department (LLE), a State Police Troop and the AOC case management system. However, the infrastructure is designed to support the messaging infrastructure defined in the J-ONE Logical Design.

The goal is to implement the functionality developed from this design as an initial production application by the end of December 2002. The initial production system will support one LLE and one State Police Troop sending electronic complaints to the AOC case management system. If the stretch goal is achieved, the production system will permit sending the disposition back to the originating entity and the Department of Corrections (DOC) for criminal complaints. Based upon the outcome of this first pilot, a schedule and process for rollout to additional law enforcement entities will be developed by the Department of Safety.

In subsequent phases the system will be expanded to support additional document types. If dispositions cannot be supported by the current effort, they will be proposed as the first additional document type in the next production phase.

�MESSAGING OVERVIEW

Messaging requires that participating systems (spoke applications) to broadcast messages based upon events or triggers. The messaging architecture involves a central message broker that interfaces with the external(spoke) applications. Participating applications broadcast their messages to this central system herein referred to as the “hub.” The hub then:

Ensures that the information is managed in a reliable, secure and timely fashion.

Ensures that information is presented/distributed to all systems that subscribe to and are authorized to receive the information.

Stores the information in permanent storage to provide auditing.

Transforms and distributes the message as per business, privacy and security rules.

The J-ONE hub may receive “raw” messages from spoke applications, or it may receive messages from another message broker that pre-processes the information before forwarding it to the J-ONE hub, thereby reducing the workload of the J-ONE hub. Such a design is referred to as a Hub and Spoke messaging architecture. As indicated above, in the J-ONE architecture a spoke can be a hub that supports additional spokes. In the current design there is one central J-ONE hub.

�EMBED Unknown���

As the name suggests, the ‘hub’ is the central controller that manages the flow of messages between all the systems as they pass through the J-ONE system. ‘Spoke’, as the name suggests, is a system that resides between the hub and remote systems and acts as a bridge between the J-ONE hub and the participating remote systems. The participating remote systems are generically referred to as “spoke applications” indicating that they are applications that communicate with J-ONE through a spoke. These applications may reside on the spoke server or simply exchange messages through the spoke server (recommended configuration).

The applications, programs and daemons (background programs that perform specialized work on spokes) that make up the J-ONE spokes and hub are generically referred to as “middleware” because they provide a bridge between applications. That is, a message is produced by an application. The originating application “publishes” the message to J-ONE. J-ONE determines who has “subscribed” to the message and delivers the message to the target application (consumer).

Messaging systems are minimally made up of the following three components:

Message Originators – Also known as the ”publisher” of a message. The message originator can be a message generated by a component that is part of the middleware or a remote (outside of J-ONE) system that needs to communicate information to another remote system. The originator need not be aware of the consumer. In J-ONE, spokes are responsible for delivering messages to the middleware. Once the message has been successfully processed by the middleware, the spoke application is free to terminate, delete or archive the message as per established business rules.

Message Processor – Also known as the Messaging Middleware, Messaging Infrastructure or Message Broker. The processor accepts an incoming message, validates the content based upon the established business requirements and distributes the message to the consumers/subscribers of the message. This processor is referred to as the ‘hub’

Message Consumers – Also known as the ”subscriber” to the message. The consumer processes the information it receives based upon the business requirements of the consuming system. In J-ONE the spoke servers provide a “bridge” between the messaging middleware and the consuming application. Consuming applications include law enforcement record/incident management systems, the AOC case management system and the DOC Inmate Tracking system.

All systems participating in a message transaction need not be available at the same time. This is referred to as asynchronous messaging. To accommodate this requirement, the messaging infrastructure needs to be ‘durable’ enough to ensure that the message is preserved throughout the life cycle of the message from origination to consumption. This durability is referred to as “guaranteed message delivery.” Typically there is a persistent storage mechanism for the message while it is participating in the messaging transaction. This storage can be in the form of a file system or a relational database. Relational databases are more reliable than the file system for message storage during the life cycle of a message. The life cycle of a message is the entire time span between the origination of the message and the consumption of the message. Transactional support is of utmost importance to ensure that messages are delivered as per the requirements of the system. In case of an error or exception, the message transaction is rolled back. Additional spokes can very easily be added and removed from the system without disturbing existing functionality of the J-ONE system and without compromising delivery of messages.

�J-ONE MESSAGING

Based upon the above discussion it is clear that for any messaging infrastructure to be successful there is a need for:

Messaging middleware.

A database for storage.

A programming language to develop the middleware business components.

Client software that creates and consumes the messages.

A number of tools and software products were evaluated as part of the Proof of Concept (PoC) phase. The following section describes the alternatives in each category and the final product selection:

PRODUCT CATEGORY�ALTERNATIVES�POC�PILOT��Programming Language�-JAVA (J2EE) 1.3.1�JAVA (J2EE) 1.3.1�JAVA (J2EE) 1.3.1��Application Server�-Oracle AS 9i,

-BEA WebLogic 6.1

-IBM WebSphere 4.0�BEA WebLogic 6.1�BEA WebLogic 7.0��Database Server�-Oracle�Oracle 8i�Oracle 9i��Spoke Client Options�-SonicMQ

-IBM MQ Series

-MySQL

-Fiorano

-Oracle Lite

-MS SQL Server

-CloudScape

-Sybase SQL Server Anywhere�MySQL 3.23�MySQL 4.0��Development Tools�JDeveloper 9i�JDeveloper 9i�TogetherSoft 6.0��

The client software (spoke applications) such as Record/Incident Management Systems, Case Management System, Criminal History, etc. is not within the scope of J-ONE. As long as these applications are able to create and consume messages in a mutually agreed format, they can very easily participate in the J-ONE system. For the PoC, a utility (xmlWizard) was used to create a complaint message that was then passed to the messaging infrastructure for distribution. The same utility was used to present the message at the destination systems. This allowed the PoC to demonstrate message creation by the originator, distribution by the processor, and consumption by the consumer. However, in this pilot and initial production implementation the originating and consuming applications will be production applications that use J-ONE as their messaging infrastructure.

The hub-spoke architecture for the pilot will have the following configuration:

�EMBED Unknown���

�SPOKE CONFIGURATION

The Spoke configuration for J-ONE is better explained in the context of a message flowing through the system. For ease of understanding, the message originator will be a law enforcement RMS application and the message consumer will be the AOC Case Management system. For messages moving from the originator to the hub (processor), please refer to the “SEND” configuration as explained below. For messages originating from the hub and moving to consumers, please refer to the “RECEIVE” configuration. All spokes act as both an originator and consumer of messages. The standard configuration for all spokes is:

Hardware Configuration:

CPU Type�-Intel Pentium III + or comparable��CPU �-400 MHZ +��Hard Disk�-5GB +��Memory�-256 MB +��CD-Rom�-Standard��NICs (2)�-10/100 Ethernet��Monitor�-15” standard +��

Software Configuration:

Operating System�-Windows 2000 Professional��JAVA Development Kit�-SUN JDK 1.3.1��Queue Repository�-MySQL 4.0��JDBC Driver�-MySQL JDBC driver��

�SEND Configuration

The send configuration defines the flow of messages from the originator (spoke) to the processor (hub). The following diagram explains the flow of a complaint from the law enforcement Records Management System (RMS) to the hub for distribution to the subscribing spokes:

�EMBED Unknown���

Spoke applications have two choices for interfacing with J-ONE. Sequential ASCII files in a format approved by DOS can be placed in a directory referred to herein as an “Originator Folder.” When this method of input is selected, output messages from J-ONE will be placed into sequential ASCII files in the “Destination Folder.” The second alternative is to place messages in TBL_STAGING_SEND, a table in the spoke MySQL database. If this option is chosen and approved by DOS, messages will be received in the TBL_STAGING_RECEIVE table of the MySQL database. When manipulating the send and receive tables, the spoke application must perform all processing described under Staging Area in both the Send and Receive discussions.

The spoke is made up of the following components:

Originator Folder: This folder is the initial point of access for a remote system to interact with the J-ONE application. The spoke application system will place a flat/ASCII file in the Originator Folder. This file will be in a pre-defined format as explained in Appendix 1. The Spoke will control access to this folder and the RMS/IMS system will have write-only privileges to this folder. This design accommodates multiple originator systems sharing a single spoke.

Spoke applications may choose to communicate through the Staging Area (see Staging Area). This requires manipulation of a MySQL database table using two phase commit to ensure delivery of a message to J-ONE. Details are provided herein on the operation and field values of the “TBL_STAGING_SEND” table. Persons wishing to communicate with J-ONE through the Staging Area must contact the New Hampshire Department of Safety J-ONE Project Manager.

Staging Area: The Staging Area is a table in the spoke MySQL TBL_STAGING_SEND database. This table is used for temporary storage of data as it is transitioned from the originator to the send queue. The structure of this table is described in Appendix 2. Spoke applications may directly read and write to this table instead of creating a flat file in the Originator Folder. If spoke application vendors chose to manipulate this table, they will need to provide the following fields:

FILE_CONTENT – the entire message.

SPOKE_APPLICATION – A DOS assigned, unique name for each spoke application

SPOKE_APPLICATION_SEQUENCE – A message sequence number provided by the spoke application (recommended but optional)

STATUS – set it to ‘N’

ID – will be auto generated.

Message Queuing Area: This area is a table in the MySQL TBL_MSG_SEND database. This table is used as a persistent send queue where messages are stored before the hub consumes them. The structure of this table is described in Appendix 2. Spoke applications do not manipulate the content of this table.

Daemons: A Daemon is a process/system service that is always running on a spoke server monitoring activities or events. Daemons can be preconfigured to monitor system folders, resources, database tables, etc. looking for predefined flags or patterns. Once they find a match, they trigger a response that could invoke a process on the same system, on a different system, notify another system or individual and even shutdown the system. Daemons can be configured to continuously monitor or monitor at a predefined interval. Daemon configuration information is available in Appendix 3. The following daemons will be developed and used as part of the SEND Configuration for the J-ONE System:

Daemon I: Daemon I will perform the following tasks:

Monitor the Originator Folder for new content files.

If new content files are found, check the TBL_STAGING_SEND table to ensure that content with a similar file name does not already exist. If another record with a similar file name exists, the daemon will ignore this file and move it to the SPOKE "ARCHIVE" folder with -“_DUPLICATE” appended to the end of the file name. If the same message file is sent a third time, the daemon will leave the message file in the "SEND" folder on the SPOKE.

If no records with this file name are found, insert the content into the Staging Area with the status “N.” The data is read from the file and streamed into the FILE_CONTENT field in the staging table.

After successful table insertion, the file is moved to a predefined folder for archiving. This predefined folder will be referenced by the “DIR_MOVE_I” parameter in the “SPOKE.INI” file.

Check the spoke application sequence number.

If the sequence number is the next number expected, process the message.

If the sequence number is not the next number expected there are two possible conditions that will be reported:

1) Message sequence number(s) are missing.

2) A message with a lower value than the expected message was received. This is caused by a message being duplicated or by messages being sent out of sequence.

If a sequence exception is detected the message will be processed and a new message will be generated and a warning will be written to the spoke “audit log” table. The new message will indicate the error and be placed in the output (from the hub) queue.

Daemon II: Daemon II will perform the following tasks:

Monitor the TBL_STAGING_SEND table in the staging area for records with status “N”.

Read records with status “N”.

Check the format. If format does not have XML tags, format the header information into the XML tags as described in Appendix 1. If mandatory data (also referred to as header information) is missing, place a new header around the entire message and send the message to the hub for quarantine. The new header will identify the exception and will direct the entire message to the “Quarantine” log maintained on the hub. Change the message status to “R.”

Validate the checksum of the content within the MSG_CONTENT tag by comparing it with the checksum (optional) provided by the originator in the MSG_CHECKSUM tag.

If the checksum is not valid, place a new header around the entire message and send the message to the hub. This new message is inserted in the message send queue (TBL_MSG_SEND) with the status “N.” The new header will identify the exception and will direct the entire message to the Quarantine log on the hub. The daemon will update the message status in the staging area to “R” and place a record in the local quarantine log. The local quarantine log will provide a pointer to the quarantined message and the reason for the quarantine.

If the checksum is valid, calculate the checksum of the entire message and post the message to the message send queue (TBL_MSG_SEND). The entry in the message send queue includes the original message and the checksum of the entire message (header and content) The message status will be “N.”

Update the status of the record in the Staging Area to “R” to indicate that the message has been posted for distribution.

Daemon III: Daemon III will perform the following tasks:

Monitor the TBL_MSG_SEND table in the Message Queuing Area for records with status “N.” Messages quarantined by the hub will have a status of “Q” and thus will not be sent to the hub.

If the status of a message is “N”, notify the hub by invoking the IJISPingServlet on the hub. This will send a message to the hub that there are new messages to be consumed. This process is further elaborated in the “Hub Configuration” section.

�RECEIVE Configuration

Receive configuration defines the flow of messages from the hub to the consumer (spoke application). The following diagram explains the flow of a complaint from the hub to the spoke Staging Area or the folder designated for communicating messages to the spoke application:

�EMBED Unknown���

The spoke is made up of the following components:

Message Queuing Area: This area is a table in the MySQL TBL_MSG_RECEIVE database. This table is used as a persistent receive queue where the hub inserts the messages for further consumption by the receiving spoke. The structure of this table is described in Appendix 2.

Staging Area: This area is a table in the MySQL TBL_STAGING_RECEIVE database. This table is used for temporary storage of data as it is transitioned from the message queuing area to the destination folder.

Transformation: The transition is from a table entry to a flat/ASCII file format for the consumers. The structure of the flat file is described in Appendix 2.

Destination Folder: This folder is the final delivery point for messages to be consumed by spoke applications that interact with the J-ONE application through directories of flat files. The spoke application is responsible for moving this file to another folder after it has been processed. In a scenario where more than one remote system is sharing the spoke, there will be separate destination folders for each system and they will have full access to their respective folder. The destination folders in a shared spoke environment will be named as “MESSAGE_RECEIVE” followed by the receiving ORI followed by the unique hub message number.

Daemons: The following daemons are included in the RECEIVE functionality of the J-ONE spokes:

Daemon IV: Daemon IV will perform the following tasks:

Monitor the TBL_MSG_RECEIVE table for records with status “N.”

Read records with status “N.”

Validate the checksum of the message by comparing it with the checksum provided by the hub.

If the checksum is not valid, insert a record in TBL_MSG_SEND on the same spoke and update the status in to “R” in TBL_MSG_RECEIVE table. The entire message is also wrapped in a quarantine header and sent to the hub so that it can be logged in the quarantine log table on the hub as described under “SEND Configuration, Daemon II.”

If the checksum is valid, format the message into a format agreed upon by DOS and the spoke application vendor. Calculate the checksum of the message content and update the value in the metadata. This value is provided as an optional feature for the remote system to validate the checksum of the message content before consuming the message. Insert this message in the TBL_STAGING_RECEIVE table with status “N”. Update the status of the message in TBL_MSG_RECEIVE to “R.”

Daemon V: Daemon V will perform the following tasks:

Monitor the TBL_STAGING_RECEIVE table in the staging area for records with status “N.”

Read records with status “N.”

Based upon the value of the “DAEMON_V_DESTINATION_TYPE“ parameter in the “SPOKE.INI” file, DAEMON_V writes the message into a flat/ASCII file in the destination folder or to a database table. The destination folder in on the receiving spoke will be named based upon the value in the “DIR_WRITE_V” parameter in the “SPOKE.INI” file. In a multiple ORI environment the destination folders in a shared spoke environment will be named as “MESSAGE_RECEIVE” followed by the receiving ORI followed by the unique hub message number.

Update the status of the record in table “TBL_STAGING_RECEIVE” to “R.”

J-ONE HUB

The “hub” is the center of all J-ONE activity. As part of J-ONE, the hub will be responsible for consuming messages from a spoke when the spoke daemon notifies the hub that a new message is ready for processing. Retrieval of the message is the first point of entry for the message into the hub environment. The following steps provide a high-level flow of messages as they move from the originating spoke, through the hub to the consuming spoke:

The spoke notifies the hub that there is a new message for consumption.

The hub determines the spoke configuration information (IP Address), establishes a connection to the spoke and extracts one or more messages with status of “N” using two-phase commit on both the hub and spoke message stores.

Once the messages are successfully extracted, the hub disconnects from the spoke.

The hub validates the checksum of the message.

If the checksum is invalid, a message is pushed to the Quarantine Queue, and the spoke message status is changed to “Q.”

If the checksum is valid, the original message is stored in a database local to the hub.

The content is transformed into a valid XML instance that makes it compliant with the J-ONE XML Specification for the complaint event type. The transformation also validates the message for required information and formatting.

The hub queries the subscriber database to determine the distribution list.

Based upon the subscriber type, the hub transforms the message into a format acceptable to each subscriber, calculates a new checksum based upon the new format and releases the message for distribution.

The distribution component then establishes a connection with each destination spoke and delivers the message to the spoke for further processing.

The key functionality of the J-ONE hub is achieved using the following techniques:

All transactions within a single data source are bound by transactional boundaries.

All transactions between different data sources are bound by distributed transactional boundaries using the XA protocol.

All messages within the hub are “persistent” as they move through the J-ONE hub. This means that they are stored in a local database to ensure message recovery if a server outage is experienced.

An audit trail is maintained as a message moves through the hub queues.

Rationale for this approach:

Most messaging software providers expect the remote systems to connect directly to the hub. This way all the queues are maintained and managed by the hub. Another alternative is to maintain the queues on the spokes and have the hub monitor (poll) the queues. Either of these alternatives significantly increases the workload of the hub as well as network traffic. For each spoke the hub wastes CPU cycles and network bandwidth when monitoring remote/local queues for new messages. In the approach utilized in J-ONE, the hub is not wasting CPU cycles or network bandwidth trying to maintain/monitor spoke queues. The spoke notifies the hub when there is a message, thereby moving the burden of monitoring the queues to the spoke machines and reducing the workload on the hub and the network infrastructure. This has an additional, positive economic impact. The hub software is expensive and priced per CPU within the server. By minimizing the server workload, the software can spend CPU cycles processing messages rather than “looking for” messages to process.

Each incoming XML message is expected to have information about the event that triggered the message included in the header metadata (like Complaint, Disposition etc.). Under normal circumstances the hub will only process information that is in the message header. However, there will be situations where the hub will need to read some information in the content to determine the exact destination of the message. A case in point is a disposition returned by the AOC Case Management System. DOC, DMV and House of Corrections will be interested in the disposition of certain “classes” of cases. Disposition of a complaint/case will be sent to the LLE/SP RMS that originated it. In this case, the subscription engine needs to be intelligent enough to determine routing based upon message content. The subscription engine is described in the J-ONE Logical Design as a very robust rules engine that evaluates extensive subscription criteria to determine the recipients of published information. The version developed for the current phase will be able to resolve subscription requirements for Complaints and Dispositions. The component has been designed to be generic enough to accommodate future enhancements/additions to the system.

The hub utilizes an Oracle database for maintaining J-ONE configuration information such as information about the spokes, the events, the subscribers to events, etc. The same database will be used for message persistence to facilitate “Guaranteed Message Delivery.” The following is the detailed configuration information for the hub:

Hardware Configuration: (Note: Will be determined upon selection of HP or SUN

hardware selection)

CPU Type�-��CPU �-��Hard Disk�-��Memory�-��CD-Rom�-��NIC�-��Monitor�-��

Software Configuration:

Operating System�-UNIX ?��Application Server�-BEA WebLogic Server 7.0��Database Server�-Oracle 9i Database ��JDBC Driver�-MySQL JDBC driver��

JDBC Connection Pools / Data Sources

IJISMGMT – This connection pool is established in the Oracle database that is used by the system to store J-ONE configuration information.

IJISMGMT_XA – This connection pool is an XA compliant data source that is used by the system wherever there is a need to exercise a two-phase commit transaction.

JMS Data Source

The application server utilizes JMS data sources to persist all incoming messages. There are two persistent message categories:

Durable – Messages that are persistent in memory. As long as the server is up and running, the messages are stored in memory and qualify for guaranteed message delivery. The messages are lost if the server platform crashes or the server is shut down. Durable messages are not sufficient for, and therefore not used by, J-ONE.

Persistent – Messages that are persisted (saved) in physical storage like a file in a directory structure or a record in a relational database. These messages survive a server crash or shut down. When the server is restarted, these messages are still in the queue and are processed as if nothing happened. All messages in the J-ONE environment will belong to this category.

JAVA Components

There are two different categories of JAVA components that are deployed as part of this application. The two categories being used by the J-ONE hub are:

JAVA 2 Standard Edition (J2SE) – The components developed using J2SE are simple JAVA classes that are deployed within the application server Virtual Machine (VM). In J-ONE, these classes are utility classes that are shared across the entire application. As the name suggests, these classes are packaged in a ‘Util.jar’ file and deployed on the application server by adding this jar file to the application classpath.

JAVA 2 Enterprise Edition (J2EE) – These are components that leverage the application server container for a number of services that are offered by the container. These components are further subdivided based upon the scope of their usage. Some of these components are used by multiple applications while others are specific to the J-ONE application. These components are accordingly packaged into two separate jar files – Services. jar and IjisApp.jar. All of these components are referred to as Enterprise JAVA Beans (EJB).

The IJISPingServlet described in Spoke Message Extraction is deployed as a (.war) web application.

Enterprise JAVA Beans

There are three broad categories for categorizing Enterprise JAVA Beans:

Stateful Session Beans

Stateless Session Beans

Entity Beans

Stateless Session Beans can be further categorized into beans that listen on a particular queue for new messages. These specialized beans are referred to as Message Driven Beans (MDB). These beans listen for new messages in a given queue and trigger a business process when a new message is received. Stateless Session Beans are used for executing short duration procedures and are returned to the application server bean pool when they complete. They do not maintain any state information between multiple instantiations/invocations. This requires less overhead than creating and using Stateful beans. The J-ONE application uses Stateless beans.

Standard J-ONE Exchange format

For this phase the standard J-ONE exchange format does not exist. The NH 20XX Complaint format will be the “standard” format used for this phase. A disposition format will also be created in this phase. The disposition format will be the standard exchange format for dispositions received from the AOC case management application until the J-ONE exchange format is produced and approved. If the message content of a complaint event is not in the NH 20XX Complaint format, it will be transformed into that format. If the message content of dispositions is not in the disposition format, it will be transformed into that format. In future phases, all message content will be transformed into the standard J-ONE exchange format. The description of the Hub Message Flow below references only the J-ONE exchange format.

Hub Message Flow

This section describes the flow of a message retrieved by the hub from the originating spoke to its distribution to one or more consuming spokes. This message flow is limited to the flow of complaints from a law enforcement entity to the AOC case management system and from the AOC case management system to the case originating law enforcement agency and to DOC. A standard naming convention has been used to clearly determine the role of any component by looking at the name of the class.

Servlets – All Servlet names end with the word “Servlet”.

Queues – All Queue names end with the word “Queue”.

Enterprise JAVA Beans (EJB) – All EJB names end with the word “Bean”.

Message Driven Beans (MDB) – All MDB names end with the letters “MDB”.

In this discussion there is a differentiation between a Weblogic queue and a J-ONE database queue. In the J-ONE implementation, Weblogic queues are persisted in an Oracle table under the control of WebLogic. Database queues created and maintained by J-ONE are also persisted in an Oracle database under J-ONE logic control. In the “Hub Message Flow” discussion, a reference to a “WebLogic queue” means a queue under the control of WebLogic, and a “database” or “database queue” is an Oracle table under the control of J-ONE logic.

As the hub processes messages, they move from one queue to the next. The processing between two queues is made up of units of work that logically belong together. All message exchanges between similar data sources under the same resource manager (Weblogic queue to Weblogic queue) are bound by a simple database transaction boundary. All message exchanges between dissimilar data sources under different resource managers (Weblogic queue to database) are bound by XA-protocol (aka two phase commit) based transaction boundary. At any given point, multiple queues and database tables may be participating in a process and the appropriate transaction management protocol is used to ensure transaction integrity. The Beans/Queues that will be created for this J-ONE phase are described below. The diagram depicts the flow of messages as they move through the J-ONE hub infrastructure:

Spoke Message Extraction

�EMBED Unknown���

IJISPingServlet – This servlet is deployed on the WebLogic application server and is responsible for receiving notification from a spoke indicating that a new message is available. The notification is in the form of a URL that is invoked by Daemon III. The servlet extracts the spoke ID from the URL and formats the request into an XML format before it is posted to the SpokeRequestQueue.

SpokeRequestQueue – JNDI Name: com.ijis.SpokeRequestQueue

The queue where the IJISPingServlet posts a notification from a spoke that a message is ready for retrieval.

SpokeMessageQueue – JNDI Name: com.ijis.SpokeMessageQueue

This is the queue where messages are posted after they have been extracted from the spoke. These messages are ready for hub processing.

SpokeRequestMDB:

Responsible for monitoring the SpokeRequestQueue for messages that are posted by the IJISPingServlet.

Invokes the MessageExtractorBean to extract the message from the specified spoke and post it to the SpokeMessageQueue for further processing.

MessageExtractorBean:

Responsible for extracting messages from the spoke after the spoke has notified the hub that a message is ready for processing.

Extracts the spoke id from the SpokeRequestQueue.

Determines the connection information for this spoke from the J-ONE configuration tables.

Establishes a JDBC connection with the spoke.

Queries for messages in the send queue with a status of “N.” The number of messages retrieved in a single connection is determined by an entry in the J-ONE configuration tables. This bean is designed to fetch only a preset number of messages from the spoke. This is done to prevent a single spoke that has a large number of messages from “holding” the queue until all messages are delivered. The bean extracts the predetermined number of records, disconnects from the spoke and processes the next entry in the queue.

Once the records are safely posted to the SpokeMessageQueue, the status of the message on the spoke is changed to “R.” This occurs after confirmation of the write to the SpokeMessageQueue.

This message exchange is wrapped in an XA transaction that allows the system to maintain transactional integrity across diverse data sources (in this case, MySQL Database and WLS JMS).

Checksum Validation

�EMBED Unknown���

SpokeMessageQueue – JNDI Name: com.ijis.SpokeMessageQueue

Described in the Spoke Message Extraction section.

IJISTransformationQueue – JNDI Name: com.ijis.IJISTransformationQueue

Messages with valid checksum values are posted to this queue.

SpokeMessageMDB:

Responsible for monitoring the SpokeMessageQueue for messages that are posted by the MessageExtractorBean.

Invokes the MessageChecksumValidationBean to validate the checksum of the incoming message.

MessageChecksumValidationBean:

Validates the checksum of the message. The checksum is calculated for the entire message received from the spoke and is compared with the checksum value received from the spoke. The checksum is valid if the values match.

If the checksum is valid, the message is forwarded to the IJISTransformationQueue so that it can be transformed into a J-ONE XML format based upon the event and/or the document type. The original message is inserted into the MSG_RECEIVE table to begin the auditing process that continues until the message is successfully delivered to the destination spoke(s). This message exchange is wrapped in an XA transaction between a Weblogics queue and an Oracle database queue.

If the checksum fails the message is forwarded to the Quarantine Log and a notification is sent to the originating spoke giving the status of the message. This notification changes the status of the messages in the send queue from “R” to “Q” indicating to the spoke that the hub has quarantined the message and appropriate action needs to be taken to resolve the issue that led to the quarantine. After issue resolution the message must be resent.

Messages can be quarantined:

If the checksum did not match.

If all required information is not provided (i.e. originating ORI).

If the message is not in the right format (i.e. a complaint is expected from the originating application in a tagged format and the complaint is received in a delimited format).

If the message arrives with a Quarantine tag, the message will be directly posted to the Quarantine Log. This occurs when the spoke detects a checksum error in the data received from the spoke application.

J-ONE Transformation

�EMBED Unknown���

IJISTransformationQueue – JNDI Name: com.ijis.IJISTransformationQueue

Described in the Checksum Validation section.

SubscriptionQueue – JNDI Name: com.ijis.SubscriptionQueue

After the content has been transformed into an XML instance compliant with the J-ONE exchange schema the message is posted to the SubscriptionQueue.

IJISTransformationMDB:

Responsible for monitoring the IJISTransformationQueue for messages that are posted by the MessageChecksumValidationBean.

Invokes the IJISTransformationBean to transform the incoming message content into the J-ONE standard exchange format. Once the message is transformed into the J-ONE standard exchange format, it is forwarded to the SubscriptionQueue. As part of the processing of SubscriptionQueue, the message will be transformed into a format understandable to each subscriber.

IJISTransformationBean:

Responsible for transforming the incoming message content into the J-ONE standard exchange format. This will allow subsequent processes to process incoming data in a standard format instead of dealing with different formats based upon the originator of the message.

In the pilot phase, this transformation will be from the format provided by the law enforcement systems into the J-ONE exchange format (see J-ONE Exchange Format). The transformation bean will also validate that all required elements exist in the message content. If required elements are not encountered during the transformation, the message is quarantined and a notification is sent to the originating spoke application.

Once the message has been transformed it is posted to the subscription queue.

Determine Subscribers

�EMBED Unknown���

SubscriptionQueue – JNDI Name: com.ijis.SubscriptionQueue

Described in the “J-ONE Transformation” section.

SpokeTransformationQueue – JNDI Name: com.ijis.SpokeTransformationQueue

Messages are posted to this queue in preparation for transformation into the format required by the destination. If there are multiple destinations there is one entry in the SpokeTransformationQueue for each destination.

SubscriptionMDB:

Responsible for monitoring the SubscriptionQueue for messages that are posted by the IJISTransformationBean.

Invokes the SubscriptionBean to determine the subscribers’ list and post the message with the subscribers list into the SpokeTransformationQueue.

SubscriptionBean:

Responsible for determining the subscribers’ list for a message.

The SubscriptionBean uses the subscriber’s table to determine the distribution list. The message header is the primary source of information needed to distribute the message. Where required, the message content is evaluated to determine the destination. In the final implementation, this service is envisioned to be a highly sophisticated, robust and complex service that will determine the list of subscribers for each event and/or document type. Authorized users will be able to create their own subscriptions based upon combinations of content and metadata using input screens. In the initial implementation the subscriber information is simple and maintained manually.

In this phase the service will determine the destination of a complaint based upon the following rules:

If the complaint contains court appearance information, the complaint will be sent to the AOC.

If the complaint does not contain court appearance information, it is sent to the AOC and DMV.

In this phase DMV will be represented by a simple queue that will receive messages but no action will be taken on the messages.

In future phases, complaints will be routed based upon flags indicating, “must appear” or “plea by mail.” If appearance is required, the message is sent only to the AOC. If appearance is not required, the message will be sent to the AOC and DMV. If the defendant pleads guilty or ”no contest” by submitting payment to the DMV, a message will be sent to the AOC and the originating law enforcement spoke application. This constitutes a disposition. If the defendant pleads not guilty, a message is sent to AOC and the originating law enforcement spoke application.

Once the subscribers’ list is determined, it is appended to the message metadata and posted to the SpokeTransformationQueue.

Spoke Transformation

�EMBED Unknown���

SpokeTransformationQueue – JNDI Name: com.ijis.SpokeTransformationQueue

Described in the “Determine Subscribers” section of this document.

DistributionQueue – JNDI Name: com.ijis.DistributionQueue

Messages are posted in this queue after they have been transformed into the format required by the destination spoke application. The transformed message is stored in the Oracle database and a message is posted in this queue to initiate the distribution process.

SpokeTransformationMDB:

Responsible for monitoring the SpokeTransformationQueue for messages that are posted by the SubscriptionBean.

Invokes the SpokeTransformationBean to transform the message into the format acceptable by the consuming spoke application. Once the messages are transformed, they are posted for distribution.

SpokeTransformationBean:

Transforms the message into the format required by the consuming spoke application.

The message is inserted into the MESSAGE_SEND table.

The message is posted to the DistributionQueue indicating that the message is available for distribution through a spoke server.

Checks to determine if there are other subscribers that should receive the current output format.

The bean moves to the next subscriber in the list and performs the next transformation.

Distribution to Spokes

�EMBED Unknown���

DistributionQueue – JNDI Name: com.ijis.DistributionQueue

Described in the “Spoke Transformation” section.

HoldMessageQueue – JNDI Name: com.ijis.HoldMessageQueue

If a spoke is not available, messages cannot be delivered. In these situations the messages are posted to the HoldMessageQueue. The message will remain in the HoldMessageQueue until the destination spoke is available. When the destination spoke is available, the message will be automatically distributed. This provides “guaranteed message delivery” without excessive polling or unproductive attempts to deliver the message.

DistributionMDB:

Responsible for monitoring the DistributionQueue for messages that are posted by the SpokeTransformationBean.

Invokes the DistributorBean to distribute the messages to the destination spoke.

DistributorBean:

Responsible for distributing the messages to the destination spoke.

This bean extracts the message from the DistributionQueue, determines the spoke id of the destination spoke and executes a query on the MSG_SEND table to find all messages destined for the now current spoke with a status of “N.”

Presuming that messages are found, the bean opens a JDBC connection with the spoke and inserts all of the messages from the hub into the spoke MSG_RECEIVE table. Once these messages are inserted into the spoke database, the hub status is updated to “R.”

If the hub is not able to establish a connection with the spoke, it sends the message to the HoldMessageQueue where the message waits till the connection is established with the spoke. In future releases, a notification might also be sent to the system administrator indicating the communications with the spoke failed and any known conditions that might assist resolution of the communications problem.

Once a message is successfully delivered to all subscribers, an acknowledgement is sent to the originating spoke where the message status is changed to “A.”

�TOOLS ANALYSIS

The following products are being used in the Pilot and Initial Production phase:

Database: The Oracle 9i database is being used by the hub to manage information about the spokes, the topics and the subscribers to those topics. The hub also uses the database to persist all messages. Oracle database was the database of choice because of its market penetration (about 60% market share) and its ability to be deployed on the Unix environment (which precluded the use of SQLServer).

	

The J-ONE uses MySQL to maintain the queues on the spoke. The product is an open source database (like Linux) available as a free download from the Internet. The product has proven robust enough to be considered for the current needs of the application.

Application Server: The application server is the runtime environment for the entire application and is key for the success of the application. Oracle 9i Application Server, BEA’s WebLogic Server (WLS) and IBM’s WebSphere Server were considered. WLS was the project team choice.

Integrated Development Environment (IDE): TogetherSoft Control Center will be used as the JAVA IDE. The product suite is a robust IDE and is tightly integrated with many of the leading application server platforms including Weblogic. The IDE allows the technical team to model the business components. These models are internally translated into code in the language of choice (support is available for JAVA/J2EE, Visual Basic and C++). Changes made to the model or the code are automatically updated in both. The documentation capabilities of the IDE are very robust and allow for easy maintenance of the code base and the supporting documentation within the same environment. The product also easily integrates with some of the leading Configuration Management tools.

Source control: MS SourceSafe will be used for storing source code and documentation. Anyone making changes to documents or code under the control of source safe is responsible for checking out the target of the change and checking in the modified component.

�

Appendices

�Appendix 1 – XML Message Exchange Format

All originators will be expected to provide message content in the stipulated XML format. Message originators will provide some metadata information within the header. This information is leveraged by the J-ONE messaging infrastructure to efficiently make distribution decisions based upon the metadata without accessing the message content. If the spoke applications interfacing with J-ONE system are capable of providing content in an XML format, J-ONE will support this capability. However, if the message originators are unable to produce their message content in the tagged or XML formats, they will still be expected to wrap their content within a set of header tags. In this scenario, the header will be in a tagged (XML) format, but the message content is not. All elements in the header are required. If required information is not provided, the message will automatically be quarantined and will not be processed. The header format for all message exchanges is described below:

<?xml version="1.0" encoding="UTF-8" ?>

<env:Envelope xmlns:env="">

 	<env:Header>

	 <EVENT></EVENT>

	 <CONTENT_ID></ CONTENT_ID>

	 <TIMESTAMP></TIMESTAMP>

	 <PRIORITY></PRIORITY>

	 <ORI></ORI>

	 <SPOKE_APPLICATION></SPOKE_APPLICATION>

 <SPOKE_APPLICATION_SEQUENCE></SPOKE_APPLICATION_SEQUENCE>

	 <CHECKSUM></CHECKSUM>

	 <ACTION></ACTION>

 	</env:Header>

 	<env:Body>

 		<MSG_CONTENT><![CDATA[

]]></MSG_CONTENT>

 	</env:Body>

</env:Envelope>

The XML format described above is adopted from the industry specification used predominantly for developing web services – SOAP (Simple Object Access Protocol). A spoke application may provide data, including the header, in a non-tagged format negotiated with DOS. This is a highly undesirable option as it increases the workload of the J-ONE system. However, this capability is provided to accommodate legacy systems that are difficult to alter and manage.

�Appendix 2 – Spoke Table Dictionary

TBL_STAGING_SEND

Columns�Data Type�Description��ID�INTEGER, AUTO INCREMENT, PK�Unique number from incoming filename.��FILE_CONTENT �BLOB, NOT NULL�Message content.��FILE_NAME		�VARCHAR (60) NOT NULL�Name of the file in the Originator Folder, the content of which is place in the FILE_CONTENT field.��STATUS			�VARCHAR (1), NOT NULL�Specifies entry status as New (N), Read (R) or Archived (A)��

TBL_MSG_SEND

Columns�Data Type�Description��MSG_ID	 �INTEGER, AUTO INCREMENT, PK�Primary Key, auto generated��STAGING_SEND_ID�INTEGER, FK, NOT NULL�Message ID from TBL_STAGING_SEND.ID, or from TBL_MSG_RECEIVE.MSG_ID.��MSG_STATUS 	�VARCHAR (1), NOT NULL�Specifies row status as New (N), Read (R), Archive (A) or Quarantined (Q). The status “Q” is only used when the hub detects an error.��MSG_CREATE_TIME�TIMESTAMP, NOT NULL�Time when this record is inserted.��MSG_READ_TIME	�TIMESTAMP, NULL�Time when this record is read by the hub.��MSG_ARCHIVE_TIME�TIMESTAMP NULL�Time when this record becomes available for archival. An entry in this field serves as an acknowledgement from the hub confirming successful distribution to all subscribers.��MSG_ORI	�VARCHAR (10), NOT NULL�Originator of the message��MSG_CHECKSUM	�LONG, NOT NULL�Checksum for the entire message including the header and content.��MSG_CONTENT	�BLOB, NOT NULL�Message content��MSG_EVENT 	�VARCHAR (20), NOT NULL�e.g. COMPLAINT or DISPOSITION.��MSG_CONTENT_ID �VARCHAR (20), NOT NULL�Unique identifier of the event. e.g. complaint id.��MSG_TS_ORI_CREATE �TIMESTAMP, NOT NULL�Time when the message is created by the spoke application system.��MSG_PRIORITY	�VARCHAR (1), NULL�Specifies priority of the message (H/M/L). Not implemented��MSG_ACTION�VARCHAR (10), NULL�New, Update or Delete.��

TBL_MSG_RECEIVE

Columns�Data Type�Description��MSG_ID	 �INTEGER, AUTO INCREMENT, PK�Primary Key.��MSG_STATUS 	�VARCHAR (1), NOT NULL�Specifies row status as New (N), Read (R) or Archive (A)��MSG_CREATE_TIME�TIMESTAMP, NOT NULL�Time when this record is inserted.��MSG_READ_TIME	�TIMESTAMP, NULL�Time when this record is read by the hub (Future use).��MSG_ARCHIVE_TIME�TIMESTAMP NULL�Time when this record becomes available for archival. An entry in this field serves as an acknowledgement from the hub confirming successful distribution to all subscribers. (Future use).��MSG_ORI	�VARCHAR (10), NOT NULL�Destination of the message. ��MSG_CHECKSUM	�LONG, NOT NULL�Checksum for the entire message including the header and content.��MSG_CONTENT	�BLOB, NOT NULL�Message content��MSG_EVENT 	�VARCHAR (20), NOT NULL�e.g. COMPLAINT or DISPOSITION.��MSG_CONTENT_ID �VARCHAR (20), NOT NULL�Unique identifier of the event. such as a complaint id.��MSG_TS_ORI_CREATE �TIMESTAMP, NOT NULL�Time when the message is created by the spoke application.��MSG_PRIORITY	�VARCHAR (1), NULL�Specifies priority of the message (H/M/L). Not implemented��MSG_ACTION�VARCHAR (10), NULL�New, Update or Delete.��

TBL_STAGING_RECEIVE

Columns�Data Type�Description��ID�INTEGER, auto increment, PK�Unique number, auto generated.��MSG_ID �INTEGER, NOT NULL, FK�TBL_MSG_RECEIVE.MSG_ID.��MSG_CONTENT		�BLOB, NOT NULL�Message content in the required format for the apoke application.��FILE_NAME		�VARCHAR (60), NULL�Name of the file that was written in the Destination Folder (asa outlined by the DIR_WRITE_V parameter in the SPOKE.INI file). or blank if the spoke application is manipulating this table��STATUS			�VARCHAR (1), NOT NULL �Status as New (N) or Read (R).��

TBL_RMS_CONSUMPTION (Based on value of DAEMON_V_DESTINATION_TYPE set as DB, DAEMON_V will insert a record into this table from TBL_MSG_RECEIVE)

Columns�Data Type�Description��MSG_ID	 �INTEGER, AUTO INCREMENT, PK�Primary Key.��MSG_STATUS 	�VARCHAR (1), NOT NULL�Specifies row status as New (N), Read (R) or Archive (A)��MSG_CREATE_TIME�TIMESTAMP, NOT NULL�Time when this record is inserted.��MSG_READ_TIME	�TIMESTAMP, NULL�Time when this record is read by the hub (Future use).��MSG_ARCHIVE_TIME�TIMESTAMP, NULL�Time when this record becomes available for archival. An entry in this field serves as an acknowledgement from the hub confirming successful distribution to all subscribers. (Future use).��MSG_ORI	�VARCHAR (10), NOT NULL�Destination of the message. ��MSG_CHECKSUM	�LONG, NOT NULL�Checksum for the entire message including the header and content.��MSG_CONTENT	�BLOB, NOT NULL�Message content��MSG_EVENT 	�VARCHAR (20), NOT NULL�e.g. COMPLAINT or DISPOSITION.��MSG_CONTENT_ID �VARCHAR (20), NOT NULL�Unique identifier of the event. such as a complaint id.��MSG_TS_ORI_CREATE �TIMESTAMP, NOT NULL�Time when the message is created by the spoke application.��MSG_PRIORITY	�VARCHAR (1), NULL�Specifies priority of the message (H/M/L). Not implemented��MSG_ACTION�VARCHAR (10), NULL�New, Update or Delete.��

TBL_AUDIT_LOG

Columns�Data Type�Description��ID�BIGINT(20), UNSIGNED, NOT NULL, AUTO INCREMENT�Unique Primary key.��SEVERITY�ENUM ('DEBUG','INFO','WARN','ERROR','FATAL') NOT NULL DEFAULT 'DEBUG',�Identifies the severity of the message written to the audit log.��CATEGORY�VARCHAR(20) NOT NULL�Identifies the category of the message written to the audit.��CLASS_NAME�VARCHAR(60), NULL�Indicates “COM.IJIS.SPOKE.DAEMONx" to indicate the message was created by DAEMON_x, where x = I, II, III, IV, or V.��SOURCE�VARCHAR(60), NULL�Indicats the pathname of the SPOKE "SEND" folder where the message file was obtained.��DESTINATION�VARCHAR(60), NULL�Indicates the destination table name as "TBL_MSG_SEND" to indicate the MySQL table where the message file was sent to.��MESSAGE_ID�BIGINT(20) UNSIGNED, NULL�Indicates the value of the "MSG_ID" column for the record in "TBL_MSG_SEND".��SPOKE_ID�SMALLINT(6), NULL�Indicates the ID of the SPOKE that created the message.��MESSAGE�LONGTEXT, NOT NULL�Indicates that the message file could not be moved to the SPOKE "RECEIVED" folder since no message was sent.��CREATED_TIME�TIMESTAMP, NOT NULL DEFAULT�Indicates the date and time the message was written to the audit log.���Appendix 3 – Spoke Daemon Configuration

Spoke Daemons will be configured using an INI file. This file will have a common area that will represent the spoke and then a separate section for information about individual daemons. The following sections describe configuration attributes relevant for each section:

[COMMON_ATTRIBUTES]

SPOKE_ID – Uniquely identifies the spoke to the hub.

FORMAT_TYPE - XML, CSV or both – used to determine formatting requirements by spoke.

URL – URL of the hub.

TAG_LIST – Tokenized list of tags that are part of the meta-data.

MULTIPLE_ORI – Indicates to the spoke that multiple systems are sharing the spoke.

[DAEMON_I]

DIR_READ_I – Originator directory where input files will be found. “None” if the spoke application will monitor place entries directly into the Staging Area.

DIR_MOVE_I – Directory to move the file after it has been inserted into the staging area if the spoke daemon is reading from a directory.

DAEMON_DELAY_I – Frequency of monitoring the originator directory.

[DAEMON_II]

DAEMON_DELAY_II – Frequency of monitoring the Staging Area.

[DAEMON_III]

DAEMON_DELAY_III – Frequency of monitoring the Message Queuing Area & notifying hub.

[DAEMON_IV]

DAEMON_DELAY_IV – Frequency of monitoring the Message Queuing Area.

[DAEMON_V]

DIR_WRITE_I – Destination directory in which to place received message content. “None” if the spoke application is processing records in the Staging Area.

DAEMON_DELAY_V – Frequency of monitoring the staging area.

�Appendix 4 – Hub Table Dictionary

MSG_RECEIVE

Columns�Data Type�Description��ID�INTEGER, NOT NULL, PK�Sequence, auto generated.��MSG_CONTENT�BLOB, NOT NULL�Incoming Message��MSG_CHECKSUM_IN�LONG, NOT NULL�Checksum of incoming message.��MSG_CHECKSUM_CALC�LONG, NULL�Checksum calculated by J-ONE��MSG_ORIGINATOR_ID�VARCHAR, NOT NULL�Spoke id��MSG_ORIGINATOR_ORI�VARCHAR, NOT NULL�Originator of the message��MSG_IN_ID�VARCHAR2(60), NOT NULL�Message id on the spoke of the incoming message ��MSG_IN_TIME�TIMESTAMP, NOT NULL�Time when the message was inserted into this table.��MSG_RECEIVED_DISTRIBUTION_LOG

Columns�Data Type�Description��ID�INTEGER, NOT NULL, PK, FK�MSG_RECEIVE.ID��NO_OF_SUBSCRIBERS�INTEGER, NOT NULL�Number of subscribers for the message.��NO_OF_DISTRIBUTIONS�INTEGER, NOT NULL�Numbers of subscribers that received the messages.��TIME_LAST_INSERTED�TIMESTAMP, NOT NULL�Timestamp of the last time the record was updated.��MSG_SEND

Columns�Data Type�Description��MSG_OUT_ID�INTEGER, NOT NULL, PK�Sequence number, auto generated��MSG_RECEIVE_ID�INTEGER, NOT NULL, FK�MSG_RECEIVE.ID��MSG_OUT_CONTENT�BLOB, NOT NULL�Message Content of outgoing message.��MSG_OUT_CHECKSUM�LONG, NOT NULL�Checksum of outgoing message.��MSG_SEND_DISTRIBUTION_LOG

Columns�Data Type�Description��MSG_OUT_ID�INTEGER, NOT NULL, PK, FK�MSG_SEND, MSG_OUT_ID��DESTINATION_ID�VARCHAR2(10) , NOT NULL, FK�SPOKE_MAPPER, SPOKE_ID��DESTINATION_MSG_ID�INTEGER, NOT NULL�Destination SPOKE_ID��DESTINATION_ORI

�VARCHAR2(10), NULL�Destination of the message��STATUS

�CHAR (1)�Indicates whether message is sent (S) or unsent (U)��SPOKE_MAPPER

Columns�Data Type�Description��SPOKE_ID�VARCHAR (10), NOT NULL, PK�Spoke id (numeric value)��SPOKE_DESC�VARCHAR(30), NULL�Spoke description��IP_ADDRESS�VARCHAR (15), NOT NULL�IP address of the spoke��DATASOURCE_NAME�VARCHAR (20)�Data source name of the spoke��ACTIVE_INDICATOR�CHAR (1), NOT NULL�Indicates that the spoke is Active “Y” or Inactive “N”��MAX_ROW_FETCH�NUMBER, NOT NULL�Indicates the maximum number of rows that will be retrieved by the hub in a single connection to the spoke.��REPEAT_FETCH�CHAR(1), NOT NULL�Indicates whether the hub should repetitively extract records from the spoke when the number of records in TBL_MSG_SEND with status of “N” > MAX_ROW_FETCH.��PORT�NUMBER, NOT NULL�Indicates the port on which the MySQL database is listening. ��USERID�VARCHAR2 (20), NOT NULL�Indicates the user id for the MySQL database server.��PASSWORD�VARCHAR2 (20), NOT NULL�Indicates the password for the MySQL database server.��DB_NAME�VARCHAR2 (20), NOT NULL�Indicates the database on MySQL database server.��TOPIC

Columns�Data Type�Description�� TOPIC_ID�NUMBER (38), NOT NULL,PK�Topic Id�� TOPIC_NAME�VARCHAR2 (40), NOT NULL�Name of the topic�� ACTIVE_INDICATOR�CHAR (1), NOT NULL�Indicates whether the topic is active (Y) or inactive (N)�� DATE_CREATED�DATE, NOT NULL�Time when the entry is made into this table.�� DATE_MODIFIED�DATE, NOT NULL�Time when the entry is updated in this table.��SUBSCRIPTION

Columns�Data Type�Description�� TOPIC_ID�NUMBER (38), PK, FK�TOPIC.TOPIC_ID��SUBSCRIBER_ID�VARCHAR2 (10), PK�Spoke Id of the subscriber (numeric value)��SUBSCRIBER_TYPE�CHAR (1)�Indicates whether the subscriber is Remote (R) or Local (L).��DATE_CREATED�DATE�Time when this record is inserted into the table.��QUARANTINE_LOG

Columns�Data Type�Description��ID�INTEGER, NOT NULL�Unique number��SOURCE�VARCHAR2(40), NOT NULL�Identifies the source/reason for the quarantine of the message.��SPOKE_ID�VARCHAR2(15), NOT NULL�SPOKE_ID reporting the quarantined message.��MSG_ID�VARCHAR2(60), NOT NULL�Message id on the SPOKE.��CONTENT�BLOB, NOT NULL�The message content of the quarantined message along with an embedded reason for the quarantine.��CREATED_TIME�TIMESTAMP, NOT NULL�Time when this row was created.��TBL_AUDIT_LOG

Columns�Data Type�Description��ID�INT, auto increment, NOT NULL�Unique Primary key.��SEVERITY�VARCHAR(20), NOT NULL�Identifies the severity of the message written to the audit log.��CATEGORY�VARCHAR(20), NOT NULL�Identifies the category of the message written to the audit.��CLASS_NAME�VARCHAR(20), NULL�Indicates “COM.IJIS.SPOKE.DAEMONx" to indicate the message was created by DAEMON_x, where x = I, II, III, IV, or V.��SOURCE�VARCHAR(60), NULL�Indicats the pathname of the SPOKE "SEND" folder where the message file was obtained.��DESTINATION�VARCHAR(60), NULL�Indicates the destination table name as "TBL_MSG_SEND" to indicate the MySQL table where the message file was sent to.��MESSAGE_ID�NUMBER, NULL�Indicates the value of the "MSG_ID" column for the record in "TBL_MSG_SEND".��SPOKE_ID�INT, NULL�Indicates the ID of the SPOKE that created the message.��MESSAGE�BLOB, NOT NULL�Indicates that the message file could not be moved to the SPOKE "RECEIVED" folder since no message was sent.��CREATED_TIME�TIMESTAMP, NOT NULL�Indicates the date and time the message was written to the audit log.���Appendix 5 – J-ONE Functional Test Plans

Spoke Test Plans

The following are test cases for testing spoke application integration with J-ONE.

SPOKE Test Plans

Please refer to the following document: "I:\CJIS\Pilot and Initial Production\TestProblemLog\J-ONE Spoke Hub Test Plan.xls"

Hub Test Plans

Please refer to the following document: "I:\CJIS\Pilot and Initial Production\TestProblemLog\J-ONE Spoke Hub Test Plan.xls"

The following section contains additional functional test plans/test cases for the components to be developed for the hub. The test plans/cases are included for each logical unit internal to the hub.

Spoke Message Extraction

Test Description�Test steps�Expected results�Tested by�Date�Pass/fail��Successful message input into SpokeRequestQueue �Start the Application Server.

Disable the SpokeRequestMDB.

Insert the number of records specified in the “hub.ini” file under “MAX_ROWS” into TBL_MSG_SEND table with a status of ‘N’.

Perform test No. 1 for Daemon III.�MAX_ROWS records should be present in the SpokeRequestQueue,.

�����Two phase commit

�Perform steps 1 through 3 of test no.1.

Perform test No. 1 for Daemon III.

Before the hub extracts all of the messages, stop the hub.�SpokeMessageQueue will contain no messages.

Status of the Records in the TBL_MSG_SEND table will be ‘N’.�����Two phase commit

�Perform steps 1 through 3 of test no.1.

Perform test No. 1 for Daemon III.

Before the hub extracts all of the messages, stop MySQL on the spoke.�SpokeMessageQueue will contain no messages.

Status of the Records in the TBL_MSG_SEND table will be ‘N’.�����Checksum Validation

Test Description�Test steps�Expected results�Tested by�Date�Pass/fail��Invalid Checksum�Perform test no. 2 in the Spoke Message Extraction .

Stop the application server.

Mofifythe CHECHSUM_CALC valuje in the TBLMSG_SEND for each record.

Enable SpokeMessageMDB)Start.

Start the application server.

Enable the QuarantineQueueMDB. �MAX_ROWS messages will be present In the QuarantineQueue.

The status of records in the TBL_MSG_SEND will be updated from ‘R’ to ‘Q’. �����Valid Checksum�Perform test no.2 in the Spoke Message Extraction series with the following two exceptions,

Enable SpokeMessageMDB

Disable JONETransformationMDB.

� MAX_ROWS records will be present In the JONETransformationQueue.

MAX_ROWS records will be inserted into MSG_RECEIVE.�����Two phase Commit�Perform test no.2 in the Spoke Message Extraction series with the following two exceptions,

Enable SpokeMessageMDB

Disable the JONETransformationMDB.

Kill the application server during message processing, but prior to completion.�Some messages will appear in the JONETransformationQueue while some messages will be rolled back in the SpokeMessageQueue.

Some records will be inserted into MSG_RECEIVE.�����Two phase Commit�Perform test no.2 in the Spoke Message Extraction series with the following two exceptions,

Enable SpokeMessageMDB

Disable JONETransformationMDB

Stop the Oracle database server after message processing begins but before message processing completes.�Some messages will appear in the JONETransformationQueue

Messages not completely processed will be rolled back in the SpokeMessageQueue.

Completely processed messages will be inserted into MSG_RECEIVE.�����J-ONE Transformation

Test Description�Test steps�Expected results�Tested by�Date�Pass/fail��Successful message transfer

�Perform test no.2 in the Check Validation series with the following two exceptions.

Enable JONETransformationMDB

Disable the SubscriptionMDB.

�Messages will appear in the SubscriptionQueue.�����Transaction failure.

�Perform test no.1.

Before all of the messages from the JONETransformationQueue are consumed, stop the application server.

�Messages processed before the application server was stopped will appear in the SubscriptionQueue.

Messages not processed before the application server is stopped will remain in the JONETransformationQueue. �����Determine Subscribers

Test Description�Test steps�Expected results�Tested by�Date�Pass/fail��Successful Message Transfer�Perform test no.1 in the JOneTransformation series with the following two exceptions.

Enable the SubscriptionMDB.

Disable the SpokeTransformationMDB.�Messages will be transferred to the SpokeTransforamtionQueue and records will be inserted into MSG_RECEIVED_DISTRIBUTION_LOG.�����Two phase commit�Perform test no. 1.

Before all records all processed, stop the application server.�Messages processed before the application server was stopped will appear in the SpokeTransformationQueue.

Messages not processed before the application server is stopped will remain in the SubscriptionQueue.�����Two phase commit�Perform test no. 1.

Before all records are processed, stop the database server.�Messages processed before the database server was stopped will appear in the SpokeTransformationQueue.

Messages not processed before the database server is stopped will remain in the SubscriptionQueue.�����Spoke Transformation

Test Description�Test steps�Expected results�Tested by�Date�Pass/fail��Successful Message Transfer�Perform test no.1 in the Determine Subscribers series with the following two exceptions.

Enable the SpokeTransformationMDB

Disable the DistributeMDB.

�Messages will be transferred to DistributionQueue and records will be inserted into tables -- MSG_SEND and MSG_SEND_DISTRIBUTION_LOG.�����Two phase commit�Perform test no. 1.

Before all records are processed, stop the application server.�Messages processed before the application server was stopped will appear in the DistributionQueue

 and some records will be inserted into tables -- MSG_SEND and MSG_SEND_DISTRIBUTION_LOG.

Messages not processed before the application server is stopped will remain in the SpokeTransformationQueue.�����Two phase commit�Perform test no. 1.

Before all records all processed, stop the database server.�Messages processed before the database server was stopped will appear in the DistributionQueue

Messages partially processed before the database server is stopped will appear in the MSG_SEND and MSG_SEND_DISTRIBUTION_LOG.

Messages not at least partially processed before the database server is stopped will remain in the SpokeTransformationQueue.�����Distribution to Spokes

Test Description�Test steps�Expected results�Tested by�Date�Pass/fail��Successful Message Transfer�Perform test No.1 in the Spoke Transformation series with the following exception.

Enable DistributeMDB.

�The messages will be distributed to remote queues and will appear in the TBL_MSG_RECEIVE table with status ‘N’.

Records will be updated in tables -- MSG_SEND and MSG_SEND_DISTRIBUTION_LOG, MSG_RECEIVE_DISTRIBUTION_LOG.�����Two phase commit�Perform test no. 1.

Before all records are processed, stop the application server.�Messages processed before the application server is stopped may appear in the TBL_MSG_RECEIVE table.

Messages processed before the application server is stopped may appear in tables -- MSG_SEND, MSG_SEND_DISTRIBUTION_LOG and MSG_RECEIVED_DISTRIBUTION_LOG.

Messages not processed prior to stopping the application server will remain in the DistributionQueue.�����Two phase commit�Perform test no. 1.

Before all records are processed, stop the database server.�Messages processed before the database server is stopped may appear in the TBL_MSG_RECEIVE table.

Messages processed before the database server is stopped may appear in tables -- MSG_SEND, MSG_SEND_DISTRIBUTION_LOG and MSG_RECEIVED_DISTRIBUTION_LOG.

Messages not processed prior to stopping the database server will remain in the DistributionQueue.�����Two phase commit�Perform test no. 1.

Before all the records all processed, stop the MySQL database on a subscriber spoke.�Messages successfully transferred prior to stopping MySQL will appear either in the DistributionQueue or the tables -- MSG_SEND and MSG_SEND_DISTRIBUTION_LOG.

Messages not processed prior to stopping MySQL will remain in the SpokeTransformationQueue.�����

<The text in this table is not accurate until you print the doc, or view it in Print Preview>

State of New Hampshire

Department of Safety�DetailedDesign_Final_V2.doc���This project was supported by Grant No. 2000-DB-MU-0033 and Grant No. 2001-DB-BX-0033 awarded by the Bureau of Justice Assistance, Office of Justice Programs, U.S. Department of Justice. Points of view in this document are those of the author and do not necessarily represent the official position or policies of the U.S. Department of Justice.

J-ONE

�KPMG CONSULTING�PUBLIC SERVICES�� DATE \@ "M/d/yyyy" �3/25/2007���<The text in this table is not accurate until you print the doc, or view it in Print Preview>

State of New Hampshire

Department of Safety�DetailedDesign_Final_V2.doc�Page � PAGE �15� of � NUMPAGES �17���

